
Real-Time Multiprocessor Locks with Nesting:
Optimizing the Common Case

Catherine E. Nemitz, Tanya Amert, and James H. Anderson

Department of Computer Science, University of North Carolina at Chapel Hill

ABSTRACT
In prior work on multiprocessor real-time locking protocols, only

protocols within the RNLP family support unrestricted lock nest-

ing while guaranteeing asymptotically optimal priority-inversion

blocking bounds. However, these protocols support nesting at the

expense of increasing the cost of processing non-nested lock re-

quests, which tend to be the common case in practice. To remedy

this situation, a new fast-pathmechanism is presented herein that ex-

tends prior RNLP variants by ensuring that non-nested requests are

processed efficiently. This mechanism yields overhead and blocking

costs for such requests that are nearly identical to those seen in the

most efficient single-resource locking protocols. In experiments,

the proposed fast-path mechanism enabled observed blocking times

for non-nested requests that were up to 17 times lower than under

an existing RNLP variant.

CCS CONCEPTS
• Computer systems organization→ Real-time systems; Em-
bedded and cyber-physical systems; Embedded software; • Software
and its engineering→Mutual exclusion; Real-time systems
software; Synchronization; Scheduling; Process synchronization;

KEYWORDS
multiprocess locking protocols, nested locks, priority-inversion

blocking, reader/writer locks, real-time locking protocols

ACM Reference format:
Catherine E. Nemitz, Tanya Amert, and James H. Anderson. 2017. Real-

Time Multiprocessor Locks with Nesting: Optimizing the Common Case. In

Proceedings of RTNS ’17, Grenoble, France, October 4–6, 2017, 274 pages.
https://doi.org/10.1145/3139258.3139262

1 INTRODUCTION
Multicore technologies have the potential to enable a wealth of

new computationally intensive embedded real-time applications,

provided efficient resource-allocation infrastructure is available.

Such infrastructure must necessarily include support for multi-

processor real-time locking protocols. Evidence suggests that the

Work supported by NSF grants CNS 1409175, CPS 1446631, and CNS 1563845, AFOSR

grant FA9550-14-1-0161, ARO grant W911NF-14-1-0499, and funding from General

Motors. This material is based upon work supported by the National Science Foun-

dation Graduate Research Fellowship Program under Grant No. DGS-1650116. Any

opinions, findings, and conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of the National Science

Foundation.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

RTNS ’17, October 4–6, 2017, Grenoble, France
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5286-4/17/10. . . $15.00

https://doi.org/10.1145/3139258.3139262

ability to nest lock requests to allow a task to access multiple re-

sources simultaneously is commonly required in practice, even

though non-nested requests predominate [1, 3]. However, only a

few protocols exist that support unrestricted nesting, and of those

that do, only those in the RNLP (real-time nested locking protocol)

family provide asymptotically optimal priority-inversion blocking

(pi-blocking) bounds.

The RNLP family includes the basic RNLP [14], which provides

mutex sharing, the RW-RNLP [13], which provides reader/writer

sharing, and the C-RNLP [10], which provides contention-sensitive

mutex sharing. A locking protocol is contention-sensitive if a task’s
pi-blocking time is O(C), where C is the number of tasks actu-

ally contending for the same resources [10]. The key to ensuring

contention-sensitivity is to avoid transitive blocking chains, which
are caused by nested requests andmay create blocking relationships

between otherwise non-conflicting tasks.

To support nested requests, each RNLP variant employs logic

more complicated than that of single-resource protocols. This logic

is the most complex in the C-RNLP because it ensures contention-

sensitivity. The RNLP and the RW-RNLP employ simpler logic

but sacrifice contention-sensitive pi-blocking, even for non-nested

requests. Thus, these protocols support nesting (the less common
case) at the expense of increased processing costs and/or pi-blocking

bounds for non-nested requests (the more common case).

Contributions. Motivated by this observation, we propose a new

fast-pathmechanism for the RNLP family that was designedwith the

twin goals of ensuring non-nested lock requests are (i) contention-
sensitive and (ii) incur low lock/unlock overheads comparable to

those of single-resource protocols. We present this fast-path mech-

anism in the context of a new reader/writer RNLP variant, which

we call the fast RW-RNLP.
1
In reader/writer sharing, read requests

can execute concurrently but write requests require exclusive ac-

cess [6]. Since reader/writer sharing subsumes mutex sharing, the

fast RW-RNLP can be applied to support the latter.

We build directly on two prior protocols. The first is the phase-
fair ticket lock (PF-TL), which is used to provide reader/writer access
to a single resource [4]. The PF-TL is a non-preemptive spin-lock.

The protected resource has two FIFO request queues, one for reads

and one for writes. If both kinds of requests are queued concurrently,

the protocol alternates between read phases wherein read requests

are given preference, and correspondingwrite phases. The PF-TL has
asymptotically optimal pi-blocking bounds and very low runtime

overheads (and is trivially contention-sensitive).

The other protocol we build on is the RW-RNLP. At this point, it

suffices to know that the RW-RNLP uses two queues per resource,

one for readers and one for writers, like the PF-TL does for a single

resource. However, additional complications arise because tasks can

hold multiple resources at the same time. This affects the queueing

logic and the orchestration of phases. The latter becomes more

difficult because different resources may be in different phases.

1
The terminology “fast-in-the-common-case RW-RNLP,” which is obviously too verbose,

would be more technically precise.

https://doi.org/10.1145/3139258.3139262
https://doi.org/10.1145/3139258.3139262

Wr
ite

Wr
ite

R1
w

R2
w

R
m-2
w

R
m-1

R
m

w

w

Wr
ite

Wr
ite

R1
w

R2
w

R
m-2
w

R
m

w

R
m-1
w R

m-1
w

. .
 .

. .
 .

(a) (b)

l la b

l la b

Figure 1: Impact of transitive blocking on non-nested requests.
In (b), Rm−1 requests ℓa and ℓb together using a DGL, as allowed
by the RW-RNLP.

The more complicated queueing logic of the RW-RNLP causes

even non-nested requests to incur higher lock/unlock overheads.

Additionally, such requests do not have contention-sensitive pi-

blocking bounds because they may become part of transitive block-

ing chains caused by nested requests. A simple example is given

in Fig. 1, which depicts two resources ℓa and ℓb , onm processors,

accessed bym write requests, R1, . . . ,Rm , issued in this order. Two

scenarios are shown that result in different pi-blocking times for

request Rm . In inset (a), there are no nested requests, and each

resource is protected by a PF-TL. Here, Rm is pi-blocked by only

one other request, which is clearly in accordance with the defini-

tion of contention-sensitivity. In inset (b), request Rm−1 accesses
both resources, and the RW-RNLP is used. Here, the nested request

Rm−1 forces Rm to be pi-blocked by all other requests, which is

clearly not contention-sensitive.

In our fast RW-RNLP, non-nested requests are immune from

the effects for transitive blocking chains caused by nesting. This

is achieved by employing a modular design that mostly separates

concerns related to handling nested and non-nested requests. This

modular design also facilitates applying the protocol in different

contexts. For example, one of the components we introduce directly

supports constant-time access for all requests in systems of single-

writer, multiple-reader resources, a common use case in embedded

systems [9]. Also, by altering one of the components, contention-

sensitivity can also be ensured for nested requests (like with the

C-RNLP, but at the expense of greater overheads for such requests).

Waiting in the fast RNLP can be realized by either spinning or

suspension, though we consider only the former in detail due to

space constraints. When no nested requests occur, the fast RW-

RNLP functions nearly identically to a set of per-resource PF-TLs.

This similarity is borne out in experiments we conducted in

which lock/unlock overheads and observed pi-blocking times were

recorded for non-nested requests. We found that lock/unlock over-

heads for such requests were nearly identical under the fast RW-

RNLP and PF-TLs. We also found that observed pi-blocking times

for such requests were reduced compared to the RW-RNLP. This

is because such requests require less overhead and are immune to

transitive blocking effects under the fast RW-RNLP.

Organization. In the rest of the paper, we give needed back-

ground (Sec. 2), describe the fast RW-RNLP in detail (Sec. 3), discuss

our experiments (Sec. 4), and conclude (Sec. 5).

2 BACKGROUND
In this section, we present relevant background material.

Task model. We consider the classic sporadic real-time task

model (we assume familiarity with this model) and focus on a

system Γ = {τ1, . . . ,τn } of n tasks scheduled on m processors

by a job-level fixed-priority scheduler (e.g. partitioned, global, or
clustered earliest-deadline-first). We denote an arbitrary job of task

τi as Ji .

Resource model. We assume the existence of nr shared resources,
denoted L = {ℓ1, . . . , ℓnr }. When a job Ji requires access to one

or more of these resources, it issues a request Ri for its needed
resources by invoking a locking protocol. We say that Ri is satisfied
as soon as Ji holds its requested resources and that it has completed
once Ji has released all of those resources. A requestRi is considered
to be active during the time interval that begins with its issuance

and ends with its completion. Whenever job Ji holds any resources,
it is said to be executing within a critical section. We let Li denote
the maximum duration of a critical section of Ji and define Lmax =
max1≤i≤n {Li }.

We allow requests to be nested. The essence of nesting is that jobs

are allowed to hold multiple resources simultaneously. Ordinarily,

nesting is realized by allowing jobs to request different resources

individually. Instead, we assume that such a job requests all of its

needed resources via one request. The resulting functionality is

equivalent to a mechanism called a dynamic group lock (DGL) [12],
which allows groups of resources to be coalesced under one lock

dynamically at runtime. (This is different from ordinary group locks,

which are used to coordinate access to groups of resources that are

statically determined offline.)

The usage of DGLs avoids deadlock. Another way to avoid dead-

lock is by requiring resources to be acquired according to some

prescribed ordering. When using DGLs instead of this approach,

jobs may sometimes have to request resources that are not actually

needed if conditional code exists. For example, if after acquiring

resource ℓa , job Ji acquires one of resources ℓb and ℓc based on

some condition, it would have to acquire all three resources via

one request. While this functionality may seem to put DGLs at a

disadvantage, the usage of DGLs results in the same worst-case

pi-blocking bounds (see below) under all existing RNLP variants as

when resource orderings are enforced.

Given our focus on reader/writer sharing, we classify resource

accesses as either reads or writes: a resource may be accessed by

multiple jobs concurrently for reading but by only one job at a

time for writing. If a job requests multiple resources via one re-

quest, we assume that all such resources are requested for either

reading or writing. Mechanisms for handling mixed requests, com-

prised of both read and write accesses, have been presented in prior

work [12]; our focus is efficiently processing non-nested requests.

If a request Ri is a read (resp., write) request, then we will often

use the notation Rr
i (resp., Rw

i) to emphasize its type. If its type is

not relevant, then we will simply use Ri . We letDi denote the set of
resources requested by Ri . Additionally, we denote the maximum

critical-section length over all read (resp., write) requests by any

task as Lrmax (resp., L
w
max).

Pi-blocking. When designing a real-time locking protocol, the

primary goal is to enable pi-blocking to be bounded. In the mul-

tiprocessor case, the precise definition of pi-blocking is subtle as

it depends on how waiting is realized (spinning vs. suspension)

and on certain analysis assumptions [2]. Due to space constraints,

we limit our attention to protocols that use spinning to realize

blocking and that are invoked non-preemptively (i.e., a resource-
requesting job is non-preemptive for the entire time it is executing

code involving the acquisition, use, and release of resources), but

suspension-based variants of our fast RW-RNLP can be obtained

by slightly altering the spin-based version presented later. (We are

nearing the completion of a suspension-based implementation and

intend to release it soon.) Non-preemptive execution is an example

of a progress mechanism [2]: it ensures that lock-holding tasks are

not delayed by untimely preemptions and thus make progress. With

spin-based waiting, a job can be considered to be pi-blocked if it is

spinning.
2

Analysis assumptions. In our analysis of pi-blocking, we consider

critical-section lengths and the number of critical sections per job

to be constants, andm and n to be variables, as in prior work [2].

If t is the time at which request Ri is issued, then we define the

contentionCi of Ri to be the number of other active requests at time

t that require resources in commonwithRi . A reader/writer locking

protocol ensures contention-sensitivity for a request Ri if the worst-
case pi-blocking for Ri is O(1) if it is a read request, and O(Ci) if
it is a write request. These pi-blocking bounds are asymptotically

optimal for non-preemptive, spin-based locking protocols [12].

Related work. In recent years, a number of locking protocols have

been presented that are asymptotically optimal with respect to pi-

blocking. These include RNLP variants [10, 13, 14] that provide fine-
grained lock nesting, meaning that each resource is protected by its

own lock. The only other protocols known to us that provide fine-

grained lock nesting are the multiprocessor bandwidth inheritance

protocol [7] and MrsP [5]; however, neither is optimal in any sense.

To our knowledge, the only existing protocols that distinguish

between read and write requests are single-resource phase-fair

locks and the RW-RNLP, both discussed next.

Phase-fair locks. Given our focus (non-preemptive spin locks),

phase-fair reader/writer locks are perhaps the best contention-sensi-

tive option in terms of lock/unlock costs (i.e., the time required to ac-

quire or release a lock) if all requests are single-resource requests [4].

As noted earlier, a phase-fair lock utilizes two FIFO queues, one for

read requests and one for write requests, and alternates between

read phases and write phases. Several possible implementations of

phase-fair locks were considered by Brandenburg and Anderson [4].

They found the phase-fair ticket-lock (PF-TL) to be comparable to or

better than other phase-fair implementations from the perspective

of lock/unlock costs.

The RW-RNLP. As mentioned earlier, the RW-RNLP uses two

per-resource FIFO queues, one for read requests and one for write re-

quests. Furthermore, it uses a mechanism called request entitlement
to orchestrate reader and writer phases; the entitlement rules de-

termine “who” (reader or writer) must concede to “whom”: entitled

requests do not concede. In Sec. 3, we consider in detail a new vari-

ant of the RW-RNLP, which we call the RW-RNLP*, that is useful for

our purposes. We carefully explain there the concept of entitlement.

The RW-RNLP is actually a family of protocols because waiting can

be realized by spinning or suspension and because different mecha-

nisms for dealing with priority inversions are required depending

on how tasks are scheduled. For the non-preemptive, spin-based

variant of the RW-RNLP (our focus), worst-case pi-blocking isO(1)
for read requests and O(m) for write requests. These bounds are
asymptotically optimal, assuming contention for write requests is

Ω(m).
2
A job can be pi-blocked at release by lower-priority jobs executing non-preemptively.

By our analysis assumptions, this release blocking is asymptotically upper bounded by

the maximum spin blocking for any such jobs, so we focus on spin blocking.

R3 , R5
r

R3

R3 , R5

Read
Write

R6

R7 R7

R7 R7R7

R7

R4

R4

R4R9

R5

(a)

(b)

(c)

(d)

Read
Write Read

Write Read
Write

R1
w

l1

R1
w

l2

R2
r

l3

R2
r

l4

R1
w

l1

R1
w

l2

R2
r

l3

R2
r

l4

R2
r

l4

R2
r

l4

R6
w

l2

l2

r

l1

r R2 , R8
r

l3

r

R2 , R8
r

l3

r

l1

r

www wr

ww ww

B(R3,t) = { R1 }
wr

w w

r

r

Figure 2: Example illustrating the rules of the RW-RNLP*.

3 THE FAST RW-RNLP
Our proposed fast RW-RNLP is constructed based on a new variant

of the RW-RNLP called the RW-RNLP* and existing locking proto-

cols. In this section, we describe the RW-RNLP* and its pi-blocking

analysis and then present the fast RW-RNLP.

3.1 The RW-RNLP*
The RW-RNLP* is obtained from the RW-RNLP by altering one

aspect of its design and changing the context in which it is applied.

For each resource ℓa , the RW-RNLP* maintains two queuesQr
a and

Qw
a , for unsatisfied read and write requests, respectively.

Example 3.1. We will use Fig. 2 as a continuing example to illus-

trate important concepts in the design of the RW-RNLP*. Each inset

of this figure shows read and write queues for four resources: ℓ1, ℓ2,
ℓ3, and ℓ4. At the time illustrated in Fig. 2(a), the write request Rw

1

is satisfied for its requested resources D1 = {ℓ1, ℓ2}, as indicated by
being positioned within the circles denoting the resources ℓ1 and
ℓ2. Because Rw

1
is satisfied, it is not in any of the queues. Similarly,

the read request Rr
2
for D2 = {ℓ3, ℓ4} is satisfied.

Basic RW-RNLP* rules. We describe the RW-RNLP* via a set of

rules to which an implementation must conform. With the excep-

tion of Rule P3, all of the rules below are taken directly from [13]. As

we shall see in Sec. 3.2, Rule P3 enables tighter pi-blocking bounds

to be computed in our context.

The first three rules place constraints on how the protocol is

used; the first two essentially enforce non-preemptive scheduling

and the third introduces our specific restricted context.

P1 A resource-holding job is always scheduled.

P2 At mostm jobs may have incomplete resource requests at any

time, at most one per processor.

P3 There is at most one incomplete non-nested write request and

one incomplete nested write request per resource at any time.

While Rule P3 may seem restrictive, it will be upheld by defi-

nition when the RW-RNLP* is applied in the context of the fast

RW-RNLP. It is also trivially upheld in systems with only single-

writer resources, which is common use case we consider later. The

following are general rules that define how requests are processed.

G1 When Ji issues Ri at time t , the timestamp of the request is

recorded: ts(Ri) := t .

G2 When Ri is satisfied, it is dequeued from either Qr
a (if it is a

read request) or Qw
a (if it is a write request) for each ℓa ∈ Di .

G3 When Ri completes, it unlocks all resources in Di .

G4 Each request issuance or completion occurs atomically. There-

fore, there is a total order on timestamps, and a request cannot

be issued at the same time that a critical section completes.

Example 3.1 (cont’d). Moving from inset (a) to inset (b) in Fig. 2,

four additional requests have been issued. Timestamps are deter-

mined for these requests when they are issued (Rule G1). (In our

examples, jobs issue requests in increasing index order.) The is-

suance of each request occurs atomically (Rule G4), so it is not

possible for two requests to obtain the same timestamp.

The arrow from Rr
3
to Rw

1
indicates that Rr

3
is blocked by Rw

1
.

This blocking relationship is formally defined later and serves to

represent just one such relationship in the system.

Fig. 2(c) depicts the system after Rw
1

has completed. By Rule G3,

it released resources ℓ1 and ℓ2. This enabled both Rr
3
and Rr

5
to

be satisfied for ℓ1 and dequeued from Qr
1
(Rule G2). Similarly, Rw

6

became satisfied for ℓ2.
In moving from inset (b) to inset (c), Rw

7
and Rr

8
have been

issued, and Rr
8
was satisfied immediately. Notice that request Rw

7

for resourcesD7 = {ℓ2, ℓ3, ℓ4}was atomically enqueued onQw
2
,Qw

3
,

andQw
4
. Because such an action is atomic, no cycles among blocked

requests can exist. In an actual implementation, the issuance and

completion of a request would not really occur atomically. However,

an implementation must ensure that these actions have the “effect”

of being atomic. We consider such issues later.

Read and write entitlement. Like the RW-RNLP, the RW-RNLP*

functions by alternating read and write phases. The mechanism

for orchestrating these phases is entitlement, which is defined sepa-

rately for read and write requests below (these definitions are taken

directly from [13]). Intuitively, a request is entitled when it should

be satisfied in the next phase, thus only unsatisfied requests may

be entitled. Together with the reader and writer rules presented

later, the definition of entitlement ensures progress and allows us

to bound pi-blocking times. Below, we use E(Qw
a) to denote the

earliest-timestamped unsatisfied write request for resource ℓa .

Example 3.1 (cont’d). In Fig. 2(b), E(Qw
2
) = Rw

6
.

Definition 3.1. An unsatisfied read request Rr
i becomes entitled

when there exists ℓa ∈ Di that is write locked, and for each resource
ℓa ∈ Di , E(Qw

a) is not entitled (see Def. 3.2).3 (Note that E(Qw
a) = ∅

could hold. In this case, we consider E(Qw
a) = ∅ to be a “null”

request that is not entitled.) Rr
i remains entitled until it is satisfied.

3
Entitlement is a property of a request, and Def. 3.1 and Def. 3.2 give conditions

upon which a request becomes entitled in terms of the entitlement of other requests.

Therefore, while Def. 3.1 and Def. 3.2 reference each other parenthetically to aid the

reader, they are not in fact circularly defined.

Example 3.1 (cont’d). In Fig. 2(b), Rr
3
and Rr

5
are both entitled

(Def. 3.1): ℓ1 is write locked, and there exists no resource ℓa inD3 or

D5 for which E(Qw
a) is entitled (Def. 3.2, below). Entitled requests

are indicated in Fig. 2 by a light gray shading.

Definition 3.2. An unsatisfied write request Rw
i becomes entitled

when for each ℓa ∈ Di , Rw
i = E(Qw

a), no read request in Qr
a is

entitled (see Def. 3.1),
3
and ℓa is not write locked. Rw

i remains

entitled until it is satisfied.

Example 3.1 (cont’d). In Fig. 2(c), Rw
4
is entitled: ℓ1 is the only

resource in D4, E(Qw
1
) = Rw

4
holds, there is no entitled read in Qr

1
,

and ℓ1 is not write locked. In moving from inset (c) to inset (d),

Rw
6

completed and released ℓ2. In Fig. 2(d), Rw
7

is entitled: Rw
7

was

at the head of each of its queues and there were no entitled read

requests in the corresponding read queues, so the only condition

that prevented Rw
7

from being entitled earlier was Rw
6
’s lock on ℓ2.

Rules for read and write requests. We complete our specification

of the RW-RNLP* by stating rules that govern how read and write

requests are processed. To state these rules, we introduce notation

to allow us identify the set of requests on which an entitled request

Ri (a read or a write) is blocked. Specifically, we let B(Ri , t) denote
the set of requests on which such a request Ri is blocked at time t .

Example 3.1 (cont’d). In Fig. 2(b), there are two entitled requests,

Rr
3
and Rr

5
, both waiting on the satisfied write request Rw

1
. If inset

(b) reflects the system state at time t , then B(Rr
3
, t) = {Rw

1
} and

B(Rr
5
, t) = {Rw

1
}. Only one of these relationships is depicted with

an arrow in the diagram to avoid clutter. Similarly, if Fig. 2(c) reflects

the system state at time t ′, then B(Rw
4
, t ′) = {Rr

3
,Rr

5
}. Note that

there are other blocking relationships throughout Fig. 2, but B(Ri , t)
is only defined for Ri at a time t when Ri is entitled.

The rules for read requests are as follows.

R1 When Rr
i is issued, for each ℓa ∈ Di , Rr

i is enqueued in Qr
a .

If Rr
i does not conflict with any entitled or satisfied write

requests, then it is satisfied immediately.

R2 An entitled read request Rr
i is satisfied at the first time instant

t such that B(Rr
i , t) = ∅.

Example 3.1 (cont’d). When Rr
3
and Rr

5
were issued, by Rule R1,

each was enqueued in Qr
1
, as shown in Fig. 2(b). When Rw

1
later

completed at some time t , as shown in Fig. 2(c), B(Rr
3
, t) = ∅ and

B(Rr
5
, t) = ∅ were both established and Rr

3
and Rr

5
were both

satisfied immediately, by Rule R2. Fig. 2(c) also shows Rr
8
being

satisfied immediately after being issued. This occurred by Rule R1,

as no satisfied or entitled write requests for ℓ3 existed at that time.

The rules for write requests are as follows.

W1 When Rw
i is issued, for each ℓa ∈ Di , Rw

i is enqueued in

timestamp order in the write queueQw
a . IfRw

i does not conflict

with any entitled or satisfied requests (read or write), then it

is satisfied immediately.

W2 An entitledwrite requestRw
i is satisfied at the first time instant

t such that B(Rw
i , t) = ∅.

Example 3.1 (cont’d). When Rw
6
was issued prior to the system

state depicted in Fig. 2(b), it was enqueued in Qw
2
, and because it

conflicted with the satisfied request Rw
1
, by Rule W1, it was not

satisfied immediately. Request Rw
1
later completed at some time t ,

as shown in Fig. 2(c), and at that time t , B(Rw
6
, t) = ∅ held, so Rw

6

became satisfied, by Rule W2.

write requests
not expanded

write requests
expanded

Read
Write Read

Write Read
Write

l1 l2 l3

l1 l2 l3

l1 l2 l3

l1 l2 l3

l1 l2 l3

(b)

(c)

(i)

(i)

(ii)

(ii)

(a)

R1
w

R1
w R1

w

R2
w

R2
w

R2
w R2

w R2
w R2

w

R2
w R2

w R2
w R2

wR2
w

R3
wR3

w

R3
wR3

w

R4
rR4

r

R4
rR4

r

R3
w

R3
w R4

rR4
r

R4
rR4

r

R2
w

Figure 3: System states without write expansion are labeled (i), and
states with write expansion (used in the RW-RNLP) are labeled (ii).

Write expansion. Aside from Rule P3, the only other difference

between the RW-RNLP* and the RW-RNLP is with regard to a tech-

nique called write expansion, which is employed by the latter but

not the former. Since the RW-RNLP* does not employ write expan-

sion, we have chosen to avoid introducing the necessary formal

machinery to completely define this technique, opting instead for

conveying the general idea behind it with an example.

Example 3.2. The general idea behind write expansion is as fol-

lows. If a write request Rw
i is issued, and if a read request Rr

j that

accesses resources in common with Rw
i could possibly be active

concurrently, then the set of resources requested by Rw
i , Di , must

be expanded to include all resources in D j . An example is given in

Fig. 3. In inset (a), a write request Rw
1

is satisfied, holding the lock

for ℓ3. Inset (b) shows two possible scenarios after the issuance of

Rw
2
, Rw

3
, and Rr

4
, with D2 = {ℓ2, ℓ3}, D3 = {ℓ1}, and D4 = {ℓ1, ℓ2}.

Inset (b)(i), on the left, shows the situation with no write expansion.

Rw
3

requires only resource ℓ1 and thus is immediately satisfied. Rr
4

is then entitled. In inset (b)(ii), Rw
2

and Rw
3

are expanded: because

there exists a read request (namely, Rr
4
) in the system that requires

ℓ1 and ℓ2, Rw
2

must be issued for D2 = {ℓ1, ℓ2, ℓ3} and Rw
3

must be

issued for D3 = {ℓ1, ℓ2}. Therefore, in inset (b)(ii), Rw
3
cannot be

satisfied until Rw
2
completes, though they do not share resources.

Inset (c) shows the situation after Rw
1

has completed. As seen in

inset (c)(i), in the scenario without write expansion, nothing new

happens to the other requests, as Rw
2

cannot proceed ahead of the

entitled read Rr
4
. However, as seen in inset (c)(ii), in the scenario

with write expansion, the completion of Rw
1
makes Rw

2
entitled.

One reason write expansion is used in the RW-RNLP is be-

cause it makes reasoning about the largest possible pi-blocking for

write requests easier. With write expansion, if Rw
i is the earliest-

timestampedwrite among allwrite requests, then it is either entitled
or satisfied, as illustrated in Ex. 3.2 and proven in [13]. Additionally,

write expansion eases certain implementation challenges.

In our setting, write expansion is problematic, as our ultimate

intent is to speed the processing of non-nested requests. With write

expansion, these could be converted into nested requests. However,

removing write expansion under the RW-RNLP* creates additional

complexity with respect to the pi-blocking scenarios that can occur,

and increases worst-case pi-blocking bounds for write requests by

a constant factor compared to the bounds under the RW-RNLP.

3.2 RW-RNLP* Pi-Blocking Bounds
In this section, we derive bounds on the worst-case acquisition delay
experienced by a request under the RW-RNLP*, i.e., the worst-case
time between the issuance and satisfaction of a request. Occasion-

ally, we will find it convenient to distinguish whether a read request

Rr
i or a write request Rw

i is nested or non-nested. For this purpose,

we will use the notation Rr,n
i , Rr,nn

i , Rw,n
i , and Rw,nn

i , where the

superscript “n” (resp., “nn”) means “nested” (resp., “non-nested”).

As in [13], we assume that all lock and unlock invocations take no

time.

The properties needed to derive acquisition-delay bounds are

stated below. Lemma 3.1 and Theorem 3.1 were proved in [13]

(appearing as “Lemma 1” and “Theorem 1” there), and those proofs

are not affected by the changes we made to the RW-RNLP to obtain

the RW-RNLP*. We illustrate each of these properties by referring

to our prior example. The remaining properties either require new

proofs or are entirely new.

Lemma 3.1. A write request Rw
i experiences acquisition delay of

at most Lrmax time units after becoming entitled.

Example 3.1 (cont’d). In insets (c) and (d) of Fig. 2, Rw
4

is simply

waiting for all requests in B(Rw
4
, te) to complete, where te is the

time when Rw
4

became entitled. It can be shown that no new re-

quests can be added to B(Rw
4
, te) until Rw

4
is satisfied. Furthermore,

by Def. 3.2, all of the requests in this set are read requests. In this

scenario, Rw
4
waits for two requests to complete before becoming

satisfied, as B(Rw
4
, te) = {Rr

3
,Rr

5
}. In the worst case, Rw

4
must

wait for Lrmax time units. Note that having multiple reads in the set

B(Rw
4
, te) does not increase this worst-case acquisition delay.

Theorem 3.1. The worst-case acquisition delay of a read request
Rr
i is at most Lwmax + L

r
max time units.

Example 3.1 (cont’d). Consider Rr
9
in Fig. 2(d). Resource ℓ1 is

currently in a read phase, as Rr
3
and Rr

5
are in their critical sections,

and there is an entitled write request, Rw
4
. Therefore, before Rr

9

is satisfied, the read requests Rr
3
and Rr

5
could take up to Lrmax

time units, and then the write request Rw
4
could take up to Lwmax

additional time units.

Lemma 3.2 below is very similar to Lemma 2 in [13] and much of

the proof given for it is taken verbatim from there. However, new

reasoning is required as we do not employ write expansion.

Lemma 3.2. If Rw
i is the earliest-timestamped active write request

for each resource in Di , then Rw
i will be satisfied within Lwmax +L

r
max

time units.
Proof. An unsatisfied write request Rw

i is either entitled or not.

If Rw
i is entitled, then by Lemma 3.1, it will become satisfied within

Lrmax time units. Otherwise, by Def. 3.2, for some resource ℓa ∈ Di ,
either (i) Rw

i , E(Qw
a), (ii) some request Rr

x ∈ Qr
a is entitled, or

(iii) ℓa is write locked by some other request. By Rule W1, Cases (i)

and (iii) are not possible because the write queues are timestamp

ordered, and Rw
i is the earliest-timestamped active write request

for each resource in Di . For Case (ii), assume that Rr
x is entitled

and ℓa ∈ Di ∩ Dx . Then, by Def. 3.1, Rr
x is blocked by at least one

satisfied write request Rw
j . By Rule P1 (a resource-holding job is

continually scheduled), all such write requests will complete within

Lwmax time units. At the time t when all such write requests have

completed, by Rule R2, each Rr
x in B(Rw

i , t)will be satisfied, and by
Def. 3.2, Rw

i will be entitled. By Lemma 3.1, Rw
i will subsequently

experience at most Lrmax additional time units of delay before being

satisfied. □

In systems for which each resource is a single-writer resource,

each write request is the earliest-timestamped active write request

for all of its required resources upon release.

Corollary 3.1. If all resources are single-writer resources, then
the worst-case acquisition delay of a write request Rw

i is at most
Lwmax + L

r
max time units.

Lemma 3.3. If no nested write requests are active while the non-
nested requestRw,nn

i is active, and ifRw,nn
i is the earliest-timestamped

active write request for its lone requested resource ℓa in Di , then
Rw,nn
i will be satisfied within Lrmax time units.

Proof. The proof of this lemma differs from that given above

for Lemma 3.2 only in how Case (ii) in that proof is addressed. For

Case (ii) in the context of Lemma 3.3, if the non-nested request

Rr,nn
x is entitled, then by Def. 3.1, it must blocked by a satisfied

write requestRw,nn
j for resource ℓa . However,Rw,nn

i is the earliest-

timestamped request for ℓa , so Case (ii) is actually impossible in the

context of Lemma 3.3. Therefore, Rw,nn
i must be either satisfied

or entitled, and in the latter case, it becomes satisfied within Lrmax
time units, by Lemma 3.1. □

The next two lemmas heavily exploit Rule P3.

Lemma 3.4. After being issued, a nested write request Rw,n
i will

become the earliest-timestamped active write request for all of the
resources in Di within 2Lwmax + L

r
max time units.

Proof. For any resource inDi for whichRw,n
i is not the earliest-

timestamped write request, by Rule P3, the earliest-timestamped

write is a non-nestedwrite request. By Lemma 3.2, each such request

is satisfied within Lwmax+L
r
max time units. By Rule P1, once satisfied,

all such non-nested write requests will complete within Lwmax time

units. Summing these two bounds yields the worst-case bound of

2Lwmax + L
r
max time units stated in the lemma. □

Lemma 3.5. After being issued, a non-nested write request Rw,nn
i

will become the earliest-timestamped active write request for its lone
requested resource ℓa in Di : (i) immediately, if no nested requests are
active while Rw,nn

i is active; (ii) within 4Lwmax + 2L
r
max time units, if

nested requests may be active while Rw,nn
i is active.

Proof. In Case (i), by Rule P3, there are no other write re-

quests accessing ℓa , so Rw,nn
i immediately becomes the earliest-

timestamped request for that resource.

In Case (ii), ifRw,nn
i is not immediately the earliest-timestamped

write request for ℓa , then there exists exactly one nested write

request Rw,n
x that is the earliest-timestamped write request for

ℓa . By Lemma 3.4, Rw,n
x will be the earliest-timestamped request

for all of its requested resources within 2Lwmax + L
r
max time units.

By Lemma 3.2, Rw,n
x will be satisfied within an additional Lwmax +

Lrmax time units. Once it is satisfied, by Rule P1, it will complete

within Lwmax time units. At that time, Rw,nn
i will be the earliest-

timestamped write request for its requested resource. Summing all

the bounds just stated, this occurs within 4Lwmax + 2L
r
max time units

in the worst case. □

Theorem 3.2, given next, provides our desired delay-acquisition

bounds. Together with Theorem 3.1, this theorem implies that all

pi-blocking bounds under the RW-RNLP* are O(1).

Theorem 3.2. The worst-case acquisition delay of a write request
Rw
i is: (i) Lrmax time units, if Rw,nn

i is a non-nested request and no
nested requests are active while Rw,nn

i is active; (ii) 5Lwmax + 3L
r
max

time units, if Rw,nn
i is a non-nested request and nested requests may

be active while Rw,nn
i is active; (iii) 3Lwmax + 2Lrmax time units, if

Rw,n
i is a nested request.
Proof. In Case (i), by Lemma 3.5(i), Rw,nn

i will be the earliest-

timestamped active write request for its lone requested resource as

soon as it is issued. By Lemma 3.3, it will be satisfied within Lrmax
time units.

In Case (ii), by Lemma 3.5(ii), Rw,nn
i will be the earliest-

timestamped active write request for its lone requested resource

within 4Lwmax + 2Lrmax time units. By Lemma 3.2, it will then be

satisfied within Lwmax + L
r
max time units, resulting in a worst-case

acquisition delay of 5Lwmax + 3L
r
max time units.

In Case (iii), by Lemma 3.4, Rw,n
i will be the earliest-time-

stamped active write request for all of its requested resources within

2Lwmax + L
r
max time units. By Lemma 3.2, it is then satisfied within

Lwmax + L
r
max time units, resulting in a worst-case acquisition delay

of 3Lwmax + 2L
r
max time units. □

It can be shown that all of the blocking bounds in Theorem 3.2 are

tight, i.e., scenarios exist in which these exact bounds occur.4 Notice
that, by Theorem 3.1 and Theorem 3.2(i), if non-nested requests are

not affected by nested requests, then read and write requests have

worst-case pi-blocking bounds of only Lwmax + L
r
max and L

r
max time

units, respectively.

3.3 Putting the Pieces Together
In this section, we describe our proposed fast RW-RNLP proto-

col. Our goals for this protocol are threefold: (i) non-nested re-

quests should have low lock/unlock overheads; (ii) such requests

should have contention-sensitive worst-case pi-blocking bounds;

(iii) nested requests should haveworst-case pi-blocking bounds that
are asymptotically the same as under the RW-RNLP. In describing

the fast RW-RNLP below, we verify that Goals (ii) and (iii) are met.

We address Goal (i) later when we discuss an implementation of the

protocol and an experimental evaluation of that implementation.

The fast RW-RNLP is defined by using the lock and unlock rou-

tines of the RNLP, the RW-RNLP*, and ordinary (not phase-fair)

mutex ticket locks (TLs) [11] as subroutines, as shown in Fig. 4.
5

Recall that the RNLP provides mutex sharing and supports nested

requests. Under it, the worst-case pi-blocking of any request is

O(m) [14]. A TL provides mutex sharing for a single resource and

ensures contention-sensitive pi-blocking.

Referring to the fast RW-RNLP structure in Fig. 4, notice that all

read requests (both nested and non-nested) directly invoke the RW-

RNLP*. Furthermore, any nested write request that requires access

to a resource ℓa must first “acquire” that resource within the context

of the RNLP and then invoke the RW-RNLP*. Also, any non-nested

write request for that resource must first “acquire” that resource

within the context of a TL associated with that resource and then

4
See online appendix: http://www.cs.unc.edu/anderson/papers.html.

5
The lock and unlock routines for the RW-RNLP* routines have been denoted in a

slightly abbreviated way. For example,W*_Lock
nn

denotes the lock routine invoked

by non-nested write requests under the RW-RNLP*.

l1 l2 ln -1 ln

...

rr
l1 l2

...

R
i

w,n

RNLP

Ti
ck

et
 lo

ck

RW-RNLP*

R
i

w,nn

R
i

r,n
R

i
r,nn

NESTED_WRITE(D
i
):

 RNLP_LOCK(D
i
)

 W*_LOCK
n(D

i
)

 Critical Section
 W*_UNLOCK

n(D
i
)

 RNLP_UNLOCK(D
i
)

NESTED_READ(D
i
):

 R*_LOCK
n(D

i
)

 Critical Section

 R*_UNLOCKn(D
i
) ln -1r

lnr

NON-NESTED_WRITE(D
i
):

 TL_LOCK(D
i
)

 W*_LOCK
nn(D

i
)

 Critical Section
 W*_UNLOCK

nn(D
i
)

 TL_UNLOCK(D
i
)

NON-NESTED_READ(D
i
):

 R*_LOCK
nn(D

i
)

 Critical Section

 R*_UNLOCKnn(D
i
)

Figure 4: Fast RW-RNLP structure.

invoke the RW-RNLP*. This overall protocol structure ensures that

Rule P3 is upheld from the perspective of the RW-RNLP*.

Because read requests directly invoke the RW-RNLP*, by The-

orem 3.1, the pi-blocking incurred by them is O(1) in the worst

case (we consider Lmax to be constant). Thus, Goals (ii) and (iii)

above are met for read requests. The following theorem shows that

these goals are also met for write requests; the pi-blocking incurred

by a non-nested write request Rw,nn
i is O(Ci) in the worst case

(recall that Ci is the contention experienced by request Ri), and
the pi-blocking incurred by a nested write request is O(m) in the

worst case. (Referring to Goal (iii), we note that the worst-case

pi-blocking for write requests under the RW-RNLP is O(m) [13].6)
Theorem 3.3. Under the fast RW-RNLP, the worst-case acquisition

delay for a write requestRw
i is: (i)Ci·(Lwmax+L

r
max)+Lrmax time units, if

Rw,nn
i is a non-nested request and no nested requests are active while

Rw,nn
i is active; (ii)Ci ·(6Lwmax + 3L

r
max)+ 5Lwmax + 3L

r
max time units,

if Rw,nn
i is a non-nested request and nested requests may be active

while Rw,nn
i is active; (iii) (m−1)·(4Lwmax+2L

r
max)+3Lwmax+2L

r
max

time units, if Rw,n
i is a nested request.

Proof. In Case (i), Rw,nn
i must wait for up to Ci contending

write requests ahead of it in the TL associated with its lone re-

quested resource. By Theorem 3.2(i), each of these write requests

may face an acquisition delay of up to Lrmax time units within the

RW-RNLP* and then execute its critical section for up to Lwmax time

units. Thus, within Ci · (Lwmax + Lrmax) time units after being is-

sued, Rw,nn
i will not be blocked by any write requests in the TL

associated with its requested resource. At that time, Rw,nn
i will

invoke the RW-RNLP* and, again by Theorem 3.2(i), experience

an acquisition delay of up to Lrmax time units. In total, this yields

a worst-case acquisition delay of Ci · (Lwmax + L
r
max) + Lrmax time

units for Rw,nn
i .

Case (ii) is similar to Case (i) except that Theorem 3.2(ii) is applied

instead of Theorem 3.2(i). Thus, the worst-case acquisition delay is

Ci · (6Lwmax + 3L
r
max) + 5Lwmax + 3L

r
max time units.

In Case (iii),Rw,n
i mustwait within the RNLP for up tom−1 other

requests to complete before it can invoke the RW-RNLP*. Arguing

as in the cases above, but this time using Theorem 3.2(iii), a worst-

case acquisition delay of (m − 1) · (4Lwmax + 2L
r
max)+ 3Lwmax + 2L

r
max

time units results. □

Note that, in a system with only single-writer resources, the RW-

RNLP* alone is sufficient and Cor. 3.1 can be applied to show that

all requests incur O(1) pi-blocking with very low constant factors.

To this point, we have fully specified the RW-RNLP* abstractly.

What remains is to devise an actual implementation of it with

reasonable overheads. We consider this issue next.

6
More precisely, the bound presented is (m − 1)(Lwmax + L

r
max).

24 23

24 23 16 15

16 1524 32

24 32

 8 7 6

 8 7 6

 0

 0

unusedrout: count of completed read requests

rin: count of issued read requests

PRES: writer present boolean

PHID: writer phase ID

Figure 5: Bits in the per-resource rin and rout variables. (A very sim-
ilar figure appears in [4].)

4 IMPLEMENTATION AND EVALUATION
Of the building blocks used to construct the fast RW-RNLP, the TL

and the RNLP have existing implementations [4, 13]. Therefore, it

remains for us to provide an implementation of the RW-RNLP* as

well as an experimental evaluation of the overall fast RW-RNLP.

Recall that we focus on the user-level, spin-based version.

4.1 Implementation
The main challenge in implementing the RW-RNLP* lies in support-

ing the atomicity assumptions inherent in the rule-based specifica-

tion of it. Such assumptions could be supported by encapsulating

certain code regions within lock and unlock calls to an underly-

ing mutex. Indeed, this approach was taken in implementing the

rules of the RW-RNLP [13]. While such an approach introduces

additional pi-blocking, the protected critical sections are usually

very short, so we consider such blocking to be part of the lock

and unlock overhead of the protocol being implemented. Still, we

would like to avoid relying on the use of mutex protocols in this

way if possible, and we want to categorically preclude their use in
implementing the lock and unlock routines for non-nested requests,

as efficiently implementing such routines is the emphasis of this

paper.

With these concerns in mind, we now describe our implementa-

tion of the RW-RNLP*.

Shared variables of the RW-RNLP*. From the point of view of our

implementation, each shared resource ℓa is viewed as pointer to a

structure called res_state, which consists of four shared counters,

rin, rout, win, and wout, as shown in Listing 1. Almost identical

counters to these are used in the PF-TL [4]. Counters win and

wout track the number of write requests for resource ℓa that have

been issued and completed, respectively. Counters rin and rout
similarly count read requests, with the added complexity of storing

information about writes in the bottom byte, as shown in Fig. 5.

Listing 1 shows various constant bit vectors used in our code to

access and manipulate certain bits in rin and rout.

Listing 1 RW-RNLP* Definitions

type res_state: record
rin, rout: unsigned integer initially 0

win, wout: unsigned integer initially 0

constant
RINC 0x100 // reader increment value

WBITS 0xff // writer bits in rin
PRES 0x80 // writer present bit

PHID 0x7f // writer phase ID bits

Non-nested requests in the RW-RNLP*. The lock and unlock rou-

tines for non-nested requests in our implementation are shown

in Listing 2. These are nearly identical to those for the PF-TL [4],

which to our knowledge is the most efficient reader/writer lock for
single-resource requests proposed to date. A non-nested read Rr,nn

i
of a resource ℓa is performed by simply incrementing the number

of readers for ℓa (Line 3) and then spinning if necessary (Line 4). In

particular, if ℓa is currently being written, then Rr,nn
i waits for a

single write request to complete as indicated by either the PRES bit

being cleared or the PHID bits being changed, which indicates that

a new writer has set those bits, and thus a write has completed. To

unlock ℓa , Rr,nn
i simply increments rout by RINC (Line 6).

A non-nestedwriteRw,nn
i of a resource ℓa waits until it holds the

earliest ticket among all write requests for ℓa (Lines 9–10). It then

atomically sets the last byte of ℓa ’s rin variable and determines the

number of read requests for ℓa upon which it must block (Lines 11–

12). Next, it waits until those reads (if any) are complete (Line 13).

When Rw,nn
i completes, it clears the writer byte of ℓa ’s rin variable

(Line 15) and increments its wout counter (Line 16).

Listing 2 RW-RNLP* Routines for Non-Nested Reqs.

1: procedure R*_Locknn(ℓ: ptr to res_state)
2: varw : unsigned int
3: w := fetch&add(ℓ�rin, RINC) & WBITS ▷ In read queue

4: await (w = 0) or (w , (ℓ�rin & WBITS)) ▷ Satisfied

5: procedure R*_Unlocknn(ℓ: ptr to res_state)
6: atomic_add(ℓ�rout, RINC)
7: procedure W*_Lock

nn
(ℓ: ptr to res_state)

8: var rticket, wticket,w : unsigned int
9: wticket := fetch&add(ℓ�win, 1) ▷ In write queue

10: await (wticket = ℓ�wout) ▷ Head of write queue

11: w := PRES | (wticket & PHID)
12: rticket := fetch&add(ℓ�rin, w)

▷ Marked entitled now for all reads to see

13: await (rticket = ℓ�rout) ▷ Satisfied

14: procedure W*_Unlock
nn
(ℓ: ptr to res_state)

15: fetch&and(ℓ�rin, 0xFFFFFF00) ▷ Clear WBITS
16: ℓ�wout := ℓ�wout + 1

Nested requests in the RW-RNLP*. The lock and unlock routines

for nested requests are shown in Listing 3. These routines are very

similar to those in Listing 2, with two notable exceptions. First, an

extra phase has been added to the lock routine for read requests

(Lines 19–21). Introducing this extra phase eliminates unnecessary

writer blocking in one particular corner case.
4
Second, because

requests are now for sets of resources, we need to ensure that such

sets can be enqueued atomically to prevent potential deadlock. (This

is why, as discussed in Sec. 2, resources must be acquired according

to a predetermined order in the variant of the RNLP that does not

use DGLs.) However, it turns out that the only potential deadlock

situation that can occur involves a race condition between nested

readers and nested writers. Furthermore, we discovered that this

race condition can be eliminated by requiring each nested read

request to hold a global PF-TL for writing when updating multiple

read queues (Lines 22–25) and by requiring each nested write re-

quest to hold this PF-TL for reading when it updates multiple write

queues (Lines 36–40). (The calls to the phase-fair lock and unlock

routines in Lines 22, 25, 36, and 40 do not specify input parameters

because we have no need to distinguish different shared resources

protected by these routines.) While using a PF-TL introduces block-

ing overhead, this overhead is only O(1) for write requests, which
require only read access. This is preferable to the blocking overhead

that would result from using a mutex lock.

Clearly, the routines in our implementation are not actually

atomic: each executes over durations of time, not instantaneously.

However, it can be formally shown that each routine is linearizable.
4

That is, for each routine, an instantaneous linearization point can
be defined at which the routine “appears” to take effect atomically.

When viewing these routines in this way, they can be shown to

support the rule-based specification of the RW-RNLP* given earlier.

Listing 3 RW-RNLP* Routines for Nested Reqs.

17: procedure R*_Lockn (D : set of ptr to res_state)
18: varwℓ : unsigned int for each ℓ in D
19: for each ℓ in D :
20: wℓ := ℓ�rin & WBITS
21: await (wℓ = 0) or (wℓ , (ℓ�rin & WBITS))
22: PFTL_W_Lock() ▷ Write-lock global PFTL

23: for each ℓ in D :
24: wℓ := fetch&add(ℓ�rin, RINC) & WBITS
25: PFTL_W_Unlock() ▷ Unlock global PFTL

26: for each ℓ in D :
27: await (wℓ =0)or(wℓ , (ℓ�rin & WBITS)) ▷ Satisfied

28: procedure R*_Unlockn (D : set of ptr to res_state)
29: for each ℓ in D :
30: atomic_add(ℓ�rout, RINC)
31: procedure W*_Lock

n
(D : set of ptr to res_state)

32: var rticketℓ ,wticketℓ ,wℓ :unsigned int for each ℓ in D
33: for each ℓ in D :
34: wticketℓ := fetch&add(ℓ�win, 1) ▷ In write queue

35: await (wticketℓ = ℓ�wout)
▷ Head of all requested write queues now

36: PFTL_R_Lock() ▷ Read-lock global PFTL

37: for each ℓ in D :
38: wℓ := PRES | (wticketℓ & PHID)
39: rticketℓ := fetch&add(ℓ�rin, wℓ)

▷ Marked entitled now for all reads to see

40: PFTL_R_Unlock() ▷ Unlock global PFTL

41: for each ℓ in D :
42: await (rticketℓ = ℓ�rout) ▷ Satisfied

43: procedure W*_Unlock
n
(D : set of ptr to res_state)

44: for each ℓ in D :
45: fetch&and(ℓ�rin, 0xFFFFFF00) ▷ Clear WBITS
46: ℓ�wout := ℓ�wout + 1

4.2 Evaluation
We conducted a user-space experimental evaluation of the fast RW-

RNLP in which lock/unlock overheads and observed blocking times

were recorded under a variety of scenarios. Given the focus of this

paper, we were particularly interested in overheads and blocking

times for non-nested requests. We conducted our experiments on a

dual-socket, 18-cores-per-socket Intel Xeon E5-2699 platform.

In our experiments, we varied a number of experimental param-

eters including the numbers of tasks and resources, nesting depths

and critical-section lengths of requests, and ratios of non-nested

to nested requests and of read to write requests. Each task was

pinned to a single core, and for task counts of up to 18, all tasks

were assigned to the same socket. Each task was configured to issue

lock and unlock calls 1,000 times to simulate behavior that would

generate the worst-case lock overhead and blocking times. In all of

our graphs, we plot these worst-case values, which were obtained

by computing the 99
th

percentile of all recorded results in order

to filter out any spurious measurements (our measurements were

taken at user level, so we have no other means for filtering results

impacted by interrupts).

Overheads and blocking. We compared the considered protocols

on the basis of overhead and blocking: the overhead incurred by a

resource request is the total time spent by it executing lock logic

within lock and unlock routines (including any time spent waiting

to access underlying locks used to enforce atomicity properties

required by that logic); the blocking incurred by the request is the

total time spent by it waiting to access its requested resources. We

measured both overhead and blocking for a number of different

scenarios. Each such scenario was defined by specifying particular

values or ranges for the experimental parameters mentioned above.

In designing the fast RW-RNLP, we have sought to ensure that (i)
non-nested requests have low overhead and experience contention-

sensitive pi-blocking and (ii) nested requests experience pi-blocking

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s) W-NN - Fast RW-RNLP
W-NN - PF-TL
R-NN - Fast RW-RNLP
R-NN - PF-TL

(a)

0 5 10 15 20 25 30 35 40
Number of Tasks

0

20

40

60

80

100

120

140

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
W-NN - PF-TL
R-NN - Fast RW-RNLP
R-NN - PF-TL

(b)
Figure 6: (a) Lock overheads and (b) blocking for non-nested read
andwrite requestswhenusing PF-TLs versus the fast RW-RNLP. For
each request Ri , Lri = 40µs, Lwi = 40µs, nr = 64, |Di | = 1. Requests
were randomly chosen to be a read (or a write) with probability 0.5.
that is no worse (and hopefully better) than that under the RW-

RNLP. Accordingly, as standards for comparison, we considered

the use of per-resource PF-TLs (which exhibit very low overhead

and are contention-sensitive) in assessing (i) and the RW-RNLP

(of course) in assessing (ii). In the course of our experiments, we

produced hundreds of graphs. The full set of graphs can be found

online.
4
A few graphs that are exemplars of trends seen generally

are discussed in the following observations.

Obs. 1. For non-nested read and write requests, the fast RW-RNLP
and PF-TLs exhibited comparable overheads.

This observation is supported by Fig. 6(a), which plots lock over-

heads for both reads and writes under both the fast RW-RNLP and

PF-TLs as a function of the task count, n. The data in this figure

corresponds to a scenario in which all requests were non-nested,

evenly distributed between reads and writes, and the total number

of resources, nr , was set to 64. The critical section of each request

was configured to have a duration of 40µs. For comparison, lock

overheads for both protocols hold steady in the range of around

1.0µs to 2.5µs for up to 18 tasks, with the fast RW-RNLP having a

slightly higher write-lock overhead than PF-TLs. Beyond 18 tasks,

lock overheads increase under both protocols. This is because, be-

yond a task count of 18, tasks are executing on both sockets of the

considered platform. Notice that, beyond a task count of 18, the

write-lock overheads of both protocols converge, and the read-lock

overhead of the fast RW-RNLP becomes slightly better. We suspect

that the better read-lock overhead of the fast RW-RNLP is due to

reduced cache invalidations of shared lock state caused by contend-

ing write requests, which must first acquire a ticket lock under the

fast RW-RNLP. We omit graphs showing unlock overheads due to

space constraints, but they showed similar trends.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s) W-N - RW-RNLP (20%)

W-N - RW-RNLP (80%)
W-N - Fast RW-RNLP (20%)
W-N - Fast RW-RNLP (80%)
W-NN - Fast RW-RNLP (20%)
W-NN - Fast RW-RNLP (80%)

(a)

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - RW-RNLP (20%)
W-N - RW-RNLP (80%)
W-N - Fast RW-RNLP (20%)
W-N - Fast RW-RNLP (80%)
W-NN - Fast RW-RNLP (20%)
W-NN - Fast RW-RNLP (80%)

(b)
Figure 7: (a) Overhead and (b) blocking for nested and non-nested
write requests under the RW-RNLP and the fast RW-RNLP. Here,
Lri = 40µs, Lwi = 40µs, nr = 64, |Di | = 1, for non-nested requests, and
|Di | = 4, for nested requests. Requests were chosen to be a read (or
write) with probability 0.5. Data is plotted for the cases of 20% and
80% of requests being nested. Due to write expansion (recall Fig. 3),
Di was inflated to include all 64 resources for writes under the RW-
RNLP.

Obs. 2. In general, overheads increased when using two sockets
instead of one.

This trend is seen in Fig. 6(a), discussed earlier, and also in

Fig. 7(a), considered in detail below. When tasks execute on two

sockets instead of one, overheads due to maintaining cache co-

herency increase. Observe that, in Fig. 6(a), lock overheads under

the fast RW-RNLP are never more than around 0.6µs. This value is
quite small compared to the 40µs critical-section length. Note that

any blocking is mostly a function of critical-section lengths.

Obs. 3. In scenarios with only non-nested requests, the fast RW-
RNLP and PF-TLs exhibited nearly identical blocking.

This observation is clearly supported by Fig. 6(b). Together with

Obs. 1, this observation suggests the viability of providing the fast

RW-RNLP as a general synchronization solution. It can even be

used in systems in which nested requests do not occur with no

detrimental impacts of note.

Obs. 4. In scenarios with both nested and non-nested requests,
overheads for write requests tended to be much lower under the fast
RW-RNLP than under the RW-RNLP.

This observation is supported by Fig. 7(a), which depicts data

from two different scenarios as detailed in the figure’s caption. The

higher overheads under the RW-RNLP are partially due to the use of

write expansion (recall Fig. 3), which increases resource contention.

This increased contention impacts the overhead of write requests, as

they write-lock an underlying PF-TL to update all relevant resource

queues atomically. Note that, under the RW-RNLP, write expansion

forces non-nested write requests to be processed like nested ones.

Notice that Fig. 7 pertains to write requests. The corresponding

read request results atm = 36 show overheads of around 0.3µs for
non-nested requests under the fast RW-RNLP compared to around

0.8µs under the RW-RNLP. Under the fast RW-RNLP, non-nested

requests had higher blocking by about one critical-section length,

and nested read requests had higher overhead (of around 3µs) and
higher blocking by a few critical-section lengths.

Obs. 5. In scenarios with both nested and non-nested requests,
blocking for write requests tended to be much lower under the fast
RW-RNLP than under the RW-RNLP.

This observation is supported by Fig. 7(b), which plots recorded

worst-case blocking times associated with the scenarios in Fig. 7(a).

Form = 36, blocking was 17 times lower under the fast RW-RNLP

than under the RW-RNLP; write expansion increases resource con-

tention, which increases blocking times of the RW-RNLP.

Obs. 6. Non-nested requests exhibited contention-sensitive block-
ing under the fast RW-RNLP but not the RW-RNLP.

This observation is also supported by Fig. 7(b). Notice that, as the

task count increases, the potential for additional blocking increases

due to transitive blocking, which negatively impacts any protocol

that provides no mechanisms for eliminating transitive blocking.

Blocking for non-nested requests under the fast RW-RNLP increases

slowly as the task count increases; withmore tasks, more contention

is possible. In contrast, non-nested write requests are converted

to nested ones under the RW-RNLP due to write expansion. As a

result, their blocking under that protocol is not O(C).
Of relevance to the analysis presented in Sec. 3, Fig. 8 demon-

strates the results of varying the critical-section length while hold-

ing the number of tasks n constant (in our experiments,m and n are

equal). In contrast, in Fig. 7(b) the number of tasks was varied, and

the critical-section length was held constant; the points in Fig. 7(b)

atm = 36 are the same as those in Fig. 8 for Li = 40µs. Note that
varyingm effectively modifies the term Ci for each request Ri .

Obs. 7. Blocking time scaled linearly with critical-section length
for both the fast RW-RNLP and the RW-RNLP.

Fig. 8 illustrates this observation, which reflects expected be-

havior based on the blocking analysis; for each type of request,

the worst-case blocking bound contains both Lwmax and L
r
max terms

with different coefficients depending on the request type.

Although our approach results in higher coefficients for the

nested write requests than the bounds proven for the RW-RNLP,

lower blocking times were generally seen under the fast RW-RNLP.

We suspect this difference is because, under the RW-RNLP, write

expansion guarantees that all write requests conflict.

We also noted differences between nested and non-nested write

requests under the fast RW-RNLP, highlighting the improvement

of O(C) over O(m) blocking. Under the fast RW-RNLP, the O(C)
blocking of non-nested write requests was almost identical to the

O(1) blocking of nested read requests. Thus, there is a significant

benefit that can be gained when contention is guaranteed to be

low.

5 CONCLUSION
We have presented a new RNLP variant, the fast RW-RNLP, which

employs a fast-path mechanism to provide contention-sensitive

pi-blocking and low processing costs for non-nested lock requests,

0 20 40 60 80 100
Critical-Section Length (microseconds)

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

Figure 8: Blocking for nested and non-nested write requests under
the RW-RNLP and the fast RW-RNLP. The critical-section length
varies,m = 36, nr = 64, |Di | = 1, for non-nested requests, and |Di | =
4, for nested requests. (|Di | is inflated to 64 under the RW-RNLP as
above.) A request was chosen to be a write with probability 0.5.

while preserving the RW-RNLP’s asymptotic pi-blocking bounds for

nested requests. While the goal of ensuring contention sensitivity

efficiently in the general case (nested requests) has so far proven to

be elusive, we have shown that it is at least possible to do so for the

common case of non-nested requests even when nested requests

exist. To ensure contention-sensitivity for non-nested requests, we

had to eliminate the write-expansion rule of the RW-RNLP. In our

experiments, this had a positive impact on blocking for all requests.

The fast RW-RNLP has a modular structure that enables different

variants to be applied in different contexts. For example, the RW-

RNLP* gives constant-time access to all resource requests in systems

comprised of single-writer, multiple-reader resources. Additionally,

the RNLP component in Fig. 4 could be replaced by the C-RNLP to

obtain contention-sensitive pi-blocking for nested requests (at the

expense of higher overheads for such requests). Further variants

realize task waiting by suspending tasks rather than by requiring

them to block by spinning; the implementation of one such variant

is in progress. In a future expanded version of this paper, we will

discuss these variants in full. We plan to compare the fast RW-RNLP

to other alternatives by conducting a large-scale overhead-aware

schedulability study. Such a study will allow us to assess the extent

towhich themore efficient processing of non-nested requests affects

the ability to ensure timing correctness in a holistic sense.

REFERENCES
[1] D. Bacon, R. Konuru, C. Murthy, and M. Serrano. Thin locks: Featherweight

synchronization for java. In PLDI 1998.
[2] B. Brandenburg. Scheduling and Locking in Multiprocessor Real-Time Operating

Systems. PhD thesis, University of North Carolina, Chapel Hill, NC, 2011.

[3] B. Brandenburg and J. Anderson. Feather-trace: A lightweight event tracing

toolkit. In OSPERT 2007.
[4] B. Brandenburg and J. Anderson. Spin-based reader-writer synchronization for

multiprocessor real-time systems. Real-Time Systems, 46(1), 2010.
[5] A. Burns and A. Wellings. A schedulability compatible multiprocessor resource

sharing protocol - MrsP. In ECRTS 2013.
[6] P. Courtois, F. Heymans, and D. Parnas. Concurrent control with readers and

writers. CACM, 14(10), 1971.

[7] D. Faggioli, G. Lipari, and T. Cucinotta. Analysis and implementation of the

multiprocessor bandwidth inheritance protocol. Real-Time Systems, 48(6), 2012.
[8] M. Herlihy and J. Wing. Linearizability: A correctness condition for concurrent

objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990.

[9] H. Huang, P. Pillai, and K. Shin. Improving wait-free algorithms for interprocess

communication in embedded real-time systems. In Proceedings of the General
Track of the Annual Conference on USENIX Annual Technical Conference, 2002.

[10] C. Jarrett, B. Ward, and J. Anderson. A contention-sensitive fine-grained locking

protocol for multiprocessor real-time systems. In RTNS 2015.
[11] J. Mellor-Crummey and M. Scott. Algorithms for scalable synchronization of

shared-memory multiprocessors. Transactions on Computer Systems, 9(1), 1991.
[12] B. Ward. Sharing Non-Processor Resources in Multiprocessor Real-Time Systems.

PhD thesis, University of North Carolina, Chapel Hill, NC, 2016.

R2

Re
ad

Wr
ite

R3

R1
r

l1

r w

Figure 9: A simple example that shows worst case acquisition delay
for a read request and the acquisition delay a write may experience
after becoming entitled.

[13] B. Ward and J. Anderson. Multi-resource real-time reader/writer locks for multi-

processors. In IPDPS 2014.
[14] B. Ward and J. Anderson. Supporting nested locking in multiprocessor real-time

systems. In ECRTS 2012.

A ADDITIONAL DETAILS
This appendix provides additional details for which the full expla-

nation, given here, would not reasonably fit within the body of the

paper.

A.1 Tight Blocking Bounds
To show that each blocking bound is tight, we show that each worst-

case bound can actually occur by means of examples. An example

corresponding to each lemma and theorem up through Theorem 3.2

is presented below in the order in which the lemmas and theorems

appear in Sec. 3. In each example, requests are numbered in the

order in which they were issued.

Lemma 3.1 bounds the acquisition delay that a write request can

experience after becoming entitled to Lrmax.

Example A.1. As shown in Fig. 9, write request Rw
2
, issued just

after Rr
1
, is immediately entitled and can experience Lrmax acquisi-

tion delay. This is exactly the upper bound presented in Lemma 3.1.

Theorem 3.1 bounds the acquisition delay a read request can

experience to Lwmax + L
r
max.

Example A.2. As Fig. 9 demonstrates, read request Rr
3
could

experience the worst-case acquisition delay if it were issued just

after the issuance of requests Rr
1
and Rw

2
, all for the same resource.

It cannot be satisfied initially as Rw
2

is entitled, and once Rw
2

is

satisfied, Rr
3
becomes entitled and may need to wait for another

Lwmax time units before acquiring the resource.

A write request Rw
i may experience up to Lwmax + L

r
max blocking

after becoming the earliest-timestamped active write request for

each resource in Di , as stated in Lemma 3.2.

Example A.3. Similarly to the previous examples, in Fig. 10,

write request Rw
3

can experience the worst-case delay stated in

Lemma 3.2 if issued just after Rw
1

and Rr
2
. It is immediately the

earliest-timestamped active write request for D3 = {ℓ2}, and must

wait both for Rw
1

to complete (Lwmax) and for the entitled Rr
2
to be-

come satisfied and then complete (Lrmax) before it can be satisfied.

Re
ad

Wr
ite

R2

R1
w

l1 l2

r

Re
ad

Wr
ite

R2 R3
wr

Figure 10: An issuance order which may cause the maximum block-
ing after a write request Rw

3
becomes the earliest-timestamped ac-

tive write request for each of its resources, here simply ℓ2.

Re
ad

Wr
ite

R3

(a)

(c)

Re
ad

Wr
ite

Re
ad

Wr
ite

Re
ad

Wr
ite

R1
w

l1 l2 l3 l4

l1

R3
w

l2 l3

R7
w

l4

wR2R2
r r

R4
w

R4
wR6

r

R4
w

R8R8
r r

R4
w

R5
w

(d)

l1

R4
w

l2 l3 l4

R10
r R5

w

R4
w

R3

(b)

l1 l2 l3 l4

w

R2R2
r r

R4

w

R6
r

R4
w

R5

w

R5

w

R10
r

R9
w

Figure 11: A series of read and write requests that illustrate the
worst-case acquisition delay for nested and non-nested write re-
quests.

Example A.1 can also be used to demonstrate a scenario in which

a non-nested write request experiences the worst-case acquisition

delay of Lrmax, proven in Lemma 3.3.

Lemma 3.4 bounds the time a nested write request must wait

before becoming the earliest-timestamped write request for all of

its resources to 2Lwmax + L
r
max.

Example A.4. As shown in Fig. 11(a), Rw,n
4

is not the earliest-

timestamped active write request for each of D4 = {ℓ2, ℓ3} when it

is issued. In fact, it must wait until Rw
3
has completed execution.

Given that each of these requests could have been issued just after

each other, Rw
4

will need to wait for the completion of Rw
1
, Rr

2
,

and Rw
3
, which may take up to 2Lwmax + L

r
max time units, to be the

earliest-timestamped active write request.

Lemma 3.5 has two cases for how soon a non-nestedwrite request

Rw,nn
i will become the earliest-timestamped request for each of its

resources. Case (i) does not need an example; the worst-case delay

for Rw,nn
i becoming the earliest-timestamped active write request

in the RW-RNLP* for Di is none at all when no nested requests are

active. Case (ii) bounds this time to 4Lwmax + 2L
r
max in the presence

of nested requests.

Example A.5. Consider Rw
5

in Fig. 11 as the non-nested write

request that is seeking to become the earliest-timestamped request

for D5 = {ℓ3}. Rw
3

may wait for up to Lwmax + L
r
max time units to

become entitled as shown in (a) and (b). Rw
4

must complete before

Rw
5
will be the earliest-timestamped request for ℓ3, and it must wait

for Rw
3

to complete. If read request Rr
6
for ℓ2 is issued as shown in

(b), then in (c), Rw
4
can be waiting behind the entitled read Rr

6
. In

fact, after just under Lwmax time units of Rw
3

executing, Rw
7

and Rr
8

could be issued as shown in (c). Thus, Rw
4

could wait an additional

Lwmax + L
r
max time units for those two request to finish before it is

satisfied. Once it is satisfied, our request of interest Rw
5
may wait

up to Lwmax time units for Rw
4

to complete, at which point Rw
5

is

finally the earliest-timestamped request for ℓ3 after waiting for

4Lwmax + 2L
r
max time units.

Theorem 3.2 presents three bounds for write requests. Non-

nested write requests may experience up to Lrmax time units of

acquisition delay if no nested requests are active (illustrated in

Fig. 9 and described in Ex. A.1). Non-nested write requests in the

presence of nested requests may experience up 5Lwmax + 3L
r
max time

units of acquisition delay (described below). Finally, nested write

requests may experience acquisition delay of up to 3Lwmax + 2L
r
max

(also described below).

Example A.6. As illustrated by Fig. 11, Rw
5
may wait for 4Lwmax +

2Lrmax time units to become the earliest-timestamped request for

its resources. Suppose just before Rw
4
completes, Rw

9
and Rr

10
are

issued, as illustrated in Fig. 11(d). Rw
5
may indeed need to wait an

additional Lwmax + L
r
max time units before being satisfied, making

its total acquisition delay 5Lwmax + 3L
r
max time units.

Fig. 11 also illustrates that a nested write request, namely Rw
4
,

may experience acquisition delay of 3Lwmax + 2Lrmax. Indeed, Rw
4

waits for the completion of three write requests (Rw
1
, Rw

3
, and Rw

7
),

which may only barely overlap, and two read phases (Rr
2
’s and Rr

8
’s

read phases) that do not overlap with any of the write requests.

A.2 Linearizability
Herlihy and Wing presented linearizability as a new correctness

condition for concurrent objects that “provides the illusion that

each operation applied by concurrent processes takes effect instan-

taneously at some point between its invocation and its response.”

Linearizability is a local property; if the operations on each ob-

ject can be linearized, the system as a whole is considered to be

linearizable [8].

In the body of the paper, we claim that each routine we presented

has a linearization point; this is the point at which the routine can be

considered to take effect (atomically). For the non-nested routines,

these points are clear. A read request enqueues atomically at Line

3 (Listing 2) and can be viewed as executing the lock function

as a whole atomically at the end of the procedure. Similarly for

R*_Unlock
nn
, the routine’s linearization point can be considered

to be at its invocation. The non-nested write routines function

similarly, with linearization points at the end of the lock routine’s

execution and the beginning of the execution of the unlock routine.

The nested routines grant access to groups of resources at a time

(Listing 3). Considering the routines themselves, each call of the lock

routine can be said to linearize to the last point in its execution. That

is, no access to any of the requested resources occurs before that

point in time, and the order of request accesses to those resources

is exactly the order of termination of the lock routines. (Recall that

linearization is defined relative to a specific resource; there may be

requests for other resources occurring concurrently. These requests

are not granted access clearly before or after the non-conflicting

request. Again, linearization is a local property and there may be

multiple legal sequential histories [8].) Just like non-nested requests,

the invocation of each unlock routine can be considered to be the

linearization point of the entire routine.

An example of the linearization of several objects is shown in

Fig. 12. An operation invocation op on a set of shared resources Di
by request Ri is indicated by Di op Ri above a line whose length
corresponds to the duration of time each invocation takes. The

linearization point of each operation’s execution is indicated with

a circle at some point during its execution. As discussed above,

this point can always be selected at the end of the execution of a

lock operation and at the beginning of the execution of an unlock
operation. In Fig. 12, time moves forward to the right.

Example A.7. In Fig. 12, Rw,n
1

is the first to begin executing the

lock logic to gain mutual exclusion access to D1 = {ℓ1, ℓ2}. Then
Rw,nn
2

is issued forD2 = {ℓ2}. Rw,nn
2

calls lock for ℓ2. It is granted
access to ℓ2 first (at the end of the lock routine), and then enters its

critical section before calling unlock.
During Rw,nn

2
’s execution of the lock operation, Rr,n

3
invoked

the lock call for D3 = {ℓ1, ℓ2}.
At some point Rw,nn

2
completes its critical section and invokes

the unlock routine. The unlock routine can be linearized to the

point indicated in the Fig. 12, which clearly comes before the point

at which Rw,n
1

or Rr,nn
3

has linearized its respective lock call. Note

that this properly reflects the mutually exclusive access for Rw,n
2

for ℓ2; a request is considered to access the resource between the lin-
earization point for its call to the lock routine and the linearization

point for its call to the unlock routine.

At a later point in time, Rw,n
1

finishes execution of the lock

routine, enters its critical section, and then calls the unlock routine.

While Rw,n
1

is executing the unlock routine for D1 = {ℓ1, ℓ2},
Rr,nn
4

and Rw,nn
5

are issued for D4 = {ℓ1} and D5 = {ℓ1}, respec-
tively.

At some point in time after Rw,nn
1

has updated the writer bits of

ℓ1’s rin variable, Rr,nn
4

becomes satisfied and completes its call to

the lock routine. Similarly, afterRw,nn
1

has updated ℓ2’s rin variable,
Rr,nn
3

becomes satisfied and completes its call to the lock routine.

Note that overlapping critical sections for ℓ1 is expected behavior

for these requests; read requests may overlap.

Once the read requests finish accessing their respective resources,

they both call the unlock routine. At a future point in time, Rw,nn
5

completes its call to the lock routine and can begin its critical

section. Note that the linearization points correctly reflect mutually

exclusive access for this request for ℓ1.

l2 R2
w,nn

lock

l1,l2 R1
w,n

lock

l2 R2
w,nn

unlock

l1,l2 R1

w,

nunlock

l1 R4

r,n

nlock

l1 R5
w,nn

lock

l1 R4
r,nn

unlock

l1 R5
w,nn

unlock

l1,l2 R3
r,n

lock l1,l2 R3
r,n

unlock

time

Figure 12: Illustration of a series of lock and unlock calls by requests R1 through R5 with the linearization point of each operation shown
with a circle.

R2

Re
ad

Wr
ite

R3

R1
r

l1 l2

r w

Re
ad

Wr
ite

R3 R4
wr

Figure 13: Illustrates the edge case in which a write request (Rw
4
)

would need to wait unnecessarily behind a nested read request (Rr
3
)

if the extra code step had not been added in Listing 3.

A.3 Corner Case for Nested Reads
In an initial implementation of the R*_Lock

n
routine in Listing 3,

we did not include the extra phase in Lines 19-21. Unfortunately,

this allows a potential edge case, as demonstrated in Fig. 13, in

which write requests suffer unnecessary transitive blocking caused

by read requests incorrectly marking themselves entitled.

In this scenario, read request Rr,nn
1

is satisfied and write request

Rw,nn
2

is entitled when read request Rr,n
3

is issued. At this point,

Rr,nn
1

has completed the R*_Lock
nn

routine and Rw,nn
2

is waiting

at Line 13 for its requested resource to become available.

Without Lines 19-21, Rr,n
3

immediately modifies ℓ1’s rin variable,
effectively marking itself entitled, and waits at Line 27 for Rw,nn

2
to

complete.WhenRw,nn
4

is released, it must wait at Line 13 (Listing 2)

for Rr,n
3

to complete, even though it should have been immediately

satisfied following the rules of the fast RW-RNLP.

Using the implementation given in Listing 3, however, Rr,n
3

must

wait at Line 21 due to Rw,nn
2

having marked itself present in the

bottom byte of ℓ1’s rin variable. This prevents Rr,n
3

from modifying

ℓ1’s rin variable before it should become entitled. Therefore, when

Rw,nn
4

is released, the condition at Line 13 is true for its single

resource ℓ2, so it is immediately satisfied.

A.4 Use of a PF-TL in Nested Routines
In the lock and unlock routines for nested requests (Listing 3), we

use a single PF-TL to provide reader/writer-like sharing for nested

requests to enqueue themselves for their respective resources. We

do this because we need to guarantee that read and write requests

enqueue atomically with respect to each other (guaranteed by ac-

cessing the PF-TL for a write and read, respectively). Because no

two nested writes are at the heads of queues for overlapping re-

source sets, no two nested writes can concurrently modify the same

rin values on Line 39. Therefore, the read-lock functionality of the

PF-TL provides access to these values that is mutually exclusive

with regards to nested read requests and nested write requests. The

write-lock functionality of the PF-TL alone guarantees mutually

exclusive access for read requests in Listing 3.

Our only challenge here was providing mutually exclusive access

for all nested requests to the rin variables. A non-nested read or

write that modifies the some rin variable will linearize before or

after the nested request (see Sec. A.2), so this does not present an

issue.

Finally, although nested read requests experience additional over-

head incurred by waiting for the write-lock of the PF-TL, this over-

head is small, as each nested requestRi onlymodifies |Di | rin values
while holding the PF-TL (no blocking is done while holding the

PF-TL); our experiments still showed very low lock overhead and

blocking times for nested read requests under the fast RW-RNLP.

B ADDITIONAL GRAPHS

0 5 10 15 20 25 30 35 40
Number of Tasks

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.1

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

10

20

30

40

50

60

70

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(c) Blocking.
Figure 14: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read and write requests under the PF-TL and the
fast RW-RNLP. Here, Lwi = 20µs, nr = 56, and |Di | = 1 for each
request Ri . Each request was randomly chosen to be a read (as
opposed to a write) with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

10

20

30

40

50

60

70

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 15: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here, Lri = 20µs, Lwi = 20µs, nr = 56, and |Di | = 1 for
each request Ri . Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

10

20

30

40

50

60

70

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 16: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here, Lri = 20µs, Lwi = 20µs, nr = 56, and |Di | = 1 for
each request Ri . Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

10

20

30

40

50

60

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 17: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here, Lri = 20µs, Lwi = 20µs, nr = 56, and |Di | = 1 for
each request Ri . Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(c) Blocking.
Figure 18: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read and write requests under the PF-TL and the
fast RW-RNLP. Here, Lri = 20µs, nr = 56, and |Di | = 1 for each
request Ri . Each request was randomly chosen to be a read (as
opposed to a write) with probability 1.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(c) Blocking.
Figure 19: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read and write requests under the PF-TL and the
fast RW-RNLP. Here, Lwi = 60µs, nr = 56, and |Di | = 1 for each
request Ri . Each request was randomly chosen to be a read (as
opposed to a write) with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 20: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here, Lri = 60µs, Lwi = 60µs, nr = 56, and |Di | = 1 for
each request Ri . Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 21: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here, Lri = 60µs, Lwi = 60µs, nr = 56, and |Di | = 1 for
each request Ri . Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

20

40

60

80

100

120

140

160

180

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 22: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here, Lri = 60µs, Lwi = 60µs, nr = 56, and |Di | = 1 for
each request Ri . Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(c) Blocking.
Figure 23: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read and write requests under the PF-TL and the
fast RW-RNLP. Here, Lri = 60µs, nr = 56, and |Di | = 1 for each
request Ri . Each request was randomly chosen to be a read (as
opposed to a write) with probability 1.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

250

300

350

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(c) Blocking.
Figure 24: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read and write requests under the PF-TL and the
fast RW-RNLP. Here, Lwi = 100µs, nr = 56, and |Di | = 1 for each
request Ri . Each request was randomly chosen to be a read (as
opposed to a write) with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

250

300

350

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 25: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here, Lri = 100µs, Lwi = 100µs, nr = 56, and |Di | = 1

for each request Ri . Each request was randomly chosen to be a
read (as opposed to a write) with probability 0.2.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

250

300

350

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 26: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here, Lri = 100µs, Lwi = 100µs, nr = 56, and |Di | = 1

for each request Ri . Each request was randomly chosen to be a
read (as opposed to a write) with probability 0.5.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

250

300

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 27: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here, Lri = 100µs, Lwi = 100µs, nr = 56, and |Di | = 1

for each request Ri . Each request was randomly chosen to be a
read (as opposed to a write) with probability 0.8.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(c) Blocking.
Figure 28: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read and write requests under the PF-TL and the
fast RW-RNLP. Here, Lri = 100µs, nr = 56, and |Di | = 1 for each
request Ri . Each request was randomly chosen to be a read (as
opposed to a write) with probability 1.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

15

20

25

30

35

40

45

50

55

60

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(c) Blocking.
Figure 29: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read and write requests under the PF-TL and the
fast RW-RNLP. Here, Lwi = 20µs, nr = 64, and |Di | = 1 for each
request Ri . Each request was randomly chosen to be a read (as
opposed to a write) with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

10

20

30

40

50

60

70

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 30: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here, Lri = 20µs, Lwi = 20µs, nr = 64, and |Di | = 1 for
each request Ri . Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

10

20

30

40

50

60

70

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 31: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here, Lri = 20µs, Lwi = 20µs, nr = 64, and |Di | = 1 for
each request Ri . Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

35

40

45

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 32: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here, Lri = 20µs, Lwi = 20µs, nr = 64, and |Di | = 1 for
each request Ri . Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.03

0.04

0.05

0.06

0.07

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(c) Blocking.
Figure 33: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read and write requests under the PF-TL and the
fast RW-RNLP. Here, Lri = 20µs, nr = 64, and |Di | = 1 for each
request Ri . Each request was randomly chosen to be a read (as
opposed to a write) with probability 1.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

20

40

60

80

100

120

140

160

180

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(c) Blocking.
Figure 34: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read and write requests under the PF-TL and the
fast RW-RNLP. Here, Lwi = 60µs, nr = 64, and |Di | = 1 for each
request Ri . Each request was randomly chosen to be a read (as
opposed to a write) with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 35: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here, Lri = 60µs, Lwi = 60µs, nr = 64, and |Di | = 1 for
each request Ri . Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 36: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here, Lri = 60µs, Lwi = 60µs, nr = 64, and |Di | = 1 for
each request Ri . Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

20

40

60

80

100

120

140

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 37: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here, Lri = 60µs, Lwi = 60µs, nr = 64, and |Di | = 1 for
each request Ri . Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.03

0.04

0.05

0.06

0.07

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(c) Blocking.
Figure 38: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read and write requests under the PF-TL and the
fast RW-RNLP. Here, Lri = 60µs, nr = 64, and |Di | = 1 for each
request Ri . Each request was randomly chosen to be a read (as
opposed to a write) with probability 1.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

250

300

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(c) Blocking.
Figure 39: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read and write requests under the PF-TL and the
fast RW-RNLP. Here, Lwi = 100µs, nr = 64, and |Di | = 1 for each
request Ri . Each request was randomly chosen to be a read (as
opposed to a write) with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

250

300

350

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 40: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here, Lri = 100µs, Lwi = 100µs, nr = 64, and |Di | = 1

for each request Ri . Each request was randomly chosen to be a
read (as opposed to a write) with probability 0.2.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

250

300

350

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 41: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here, Lri = 100µs, Lwi = 100µs, nr = 64, and |Di | = 1

for each request Ri . Each request was randomly chosen to be a
read (as opposed to a write) with probability 0.5.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

250

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 42: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here, Lri = 100µs, Lwi = 100µs, nr = 64, and |Di | = 1

for each request Ri . Each request was randomly chosen to be a
read (as opposed to a write) with probability 0.8.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

0.075

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(c) Blocking.
Figure 43: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read and write requests under the PF-TL and the
fast RW-RNLP. Here, Lri = 100µs, nr = 64, and |Di | = 1 for each
request Ri . Each request was randomly chosen to be a read (as
opposed to a write) with probability 1.

0 20 40 60 80 100
CS Length

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

250

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(c) Blocking.
Figure 44: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here,m = 18, nr = 56, and |Di | = 1 for each request
Ri . Each request was randomly chosen to be a read (as opposed
to a write) with probability 0.

0 20 40 60 80 100
CS Length

0.10

0.15

0.20

0.25

0.30

0.35

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.10

0.15

0.20

0.25

0.30

0.35

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

250

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 45: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here,m = 18, nr = 56, and |Di | = 1 for each request
Ri . Each request was randomly chosen to be a read (as opposed
to a write) with probability 0.2.

0 20 40 60 80 100
CS Length

0.10

0.15

0.20

0.25

0.30

0.35

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.10

0.15

0.20

0.25

0.30

0.35

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

250

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 46: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here,m = 18, nr = 56, and |Di | = 1 for each request
Ri . Each request was randomly chosen to be a read (as opposed
to a write) with probability 0.5.

0 20 40 60 80 100
CS Length

0.10

0.15

0.20

0.25

0.30

0.35

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.10

0.15

0.20

0.25

0.30

0.35

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 47: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here,m = 18, nr = 56, and |Di | = 1 for each request
Ri . Each request was randomly chosen to be a read (as opposed
to a write) with probability 0.8.

0 20 40 60 80 100
CS Length

0.105

0.110

0.115

0.120

0.125

0.130

0.135

0.140

0.145

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.100

0.105

0.110

0.115

0.120

0.125

0.130

0.135

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(c) Blocking.
Figure 48: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here,m = 18, nr = 56, and |Di | = 1 for each request
Ri . Each request was randomly chosen to be a read (as opposed
to a write) with probability 1.

0 20 40 60 80 100
CS Length

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

250

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(c) Blocking.
Figure 49: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here,m = 18, nr = 64, and |Di | = 1 for each request
Ri . Each request was randomly chosen to be a read (as opposed
to a write) with probability 0.

0 20 40 60 80 100
CS Length

0.10

0.15

0.20

0.25

0.30

0.35

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.10

0.15

0.20

0.25

0.30

0.35

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 50: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here,m = 18, nr = 64, and |Di | = 1 for each request
Ri . Each request was randomly chosen to be a read (as opposed
to a write) with probability 0.2.

0 20 40 60 80 100
CS Length

0.10

0.15

0.20

0.25

0.30

0.35

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.10

0.15

0.20

0.25

0.30

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 51: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here,m = 18, nr = 64, and |Di | = 1 for each request
Ri . Each request was randomly chosen to be a read (as opposed
to a write) with probability 0.5.

0 20 40 60 80 100
CS Length

0.10

0.15

0.20

0.25

0.30

0.35

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.10

0.15

0.20

0.25

0.30

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

20

40

60

80

100

120

140

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 52: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here,m = 18, nr = 64, and |Di | = 1 for each request
Ri . Each request was randomly chosen to be a read (as opposed
to a write) with probability 0.8.

0 20 40 60 80 100
CS Length

0.105

0.110

0.115

0.120

0.125

0.130

0.135

0.140

0.145

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.10

0.11

0.12

0.13

0.14

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(c) Blocking.
Figure 53: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here,m = 18, nr = 64, and |Di | = 1 for each request
Ri . Each request was randomly chosen to be a read (as opposed
to a write) with probability 1.

0 20 40 60 80 100
CS Length

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

250

300

350

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(c) Blocking.
Figure 54: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here,m = 36, nr = 56, and |Di | = 1 for each request
Ri . Each request was randomly chosen to be a read (as opposed
to a write) with probability 0.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

250

300

350

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 55: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here,m = 36, nr = 56, and |Di | = 1 for each request
Ri . Each request was randomly chosen to be a read (as opposed
to a write) with probability 0.2.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

250

300

350

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 56: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here,m = 36, nr = 56, and |Di | = 1 for each request
Ri . Each request was randomly chosen to be a read (as opposed
to a write) with probability 0.5.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

250

300

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 57: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here,m = 36, nr = 56, and |Di | = 1 for each request
Ri . Each request was randomly chosen to be a read (as opposed
to a write) with probability 0.8.

0 20 40 60 80 100
CS Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

0.075

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(c) Blocking.
Figure 58: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here,m = 36, nr = 56, and |Di | = 1 for each request
Ri . Each request was randomly chosen to be a read (as opposed
to a write) with probability 1.

0 20 40 60 80 100
CS Length

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

250

300

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
W-NN - PF-TL

(c) Blocking.
Figure 59: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here,m = 36, nr = 64, and |Di | = 1 for each request
Ri . Each request was randomly chosen to be a read (as opposed
to a write) with probability 0.

0 20 40 60 80 100
CS Length

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.2

0.4

0.6

0.8

1.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

250

300

350

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 60: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here,m = 36, nr = 64, and |Di | = 1 for each request
Ri . Each request was randomly chosen to be a read (as opposed
to a write) with probability 0.2.

0 20 40 60 80 100
CS Length

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.4

0.6

0.8

1.0

1.2

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

250

300

350

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 61: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here,m = 36, nr = 64, and |Di | = 1 for each request
Ri . Each request was randomly chosen to be a read (as opposed
to a write) with probability 0.5.

0 20 40 60 80 100
CS Length

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.2

0.4

0.6

0.8

1.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

250

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 62: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here,m = 36, nr = 64, and |Di | = 1 for each request
Ri . Each request was randomly chosen to be a read (as opposed
to a write) with probability 0.8.

0 20 40 60 80 100
CS Length

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
R-NN - PF-TL

(c) Blocking.
Figure 63: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here,m = 36, nr = 64, and |Di | = 1 for each request
Ri . Each request was randomly chosen to be a read (as opposed
to a write) with probability 1.

0 20 40 60 80 100
Percent Reads

0.10

0.15

0.20

0.25

0.30

0.35

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.10

0.15

0.20

0.25

0.30

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

35

40

45

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 64: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read and write requests under the PF-TL and the
fast RW-RNLP. Here,m = 18, Lri = 20µs, Lwi = 20µs, nr = 56, and
|Di | = 1 for each request Ri . Each request was randomly chosen
to be a read (as opposed to a write) with probability as shown.

0 20 40 60 80 100
Percent Reads

0.10

0.15

0.20

0.25

0.30

0.35

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.10

0.15

0.20

0.25

0.30

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

20

40

60

80

100

120

140

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 65: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read and write requests under the PF-TL and the
fast RW-RNLP. Here,m = 18, Lri = 60µs, Lwi = 60µs, nr = 56, and
|Di | = 1 for each request Ri . Each request was randomly chosen
to be a read (as opposed to a write) with probability as shown.

0 20 40 60 80 100
Percent Reads

0.10

0.15

0.20

0.25

0.30

0.35

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.10

0.15

0.20

0.25

0.30

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

50

100

150

200

250

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 66: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here,m = 18, Lri = 100µs, Lwi = 100µs, nr = 56, and
|Di | = 1 for each request Ri . Each request was randomly chosen
to be a read (as opposed to a write) with probability as shown.

0 20 40 60 80 100
Percent Reads

0.10

0.15

0.20

0.25

0.30

0.35

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.10

0.15

0.20

0.25

0.30

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

35

40

45

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 67: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read and write requests under the PF-TL and the
fast RW-RNLP. Here,m = 18, Lri = 20µs, Lwi = 20µs, nr = 64, and
|Di | = 1 for each request Ri . Each request was randomly chosen
to be a read (as opposed to a write) with probability as shown.

0 20 40 60 80 100
Percent Reads

0.10

0.15

0.20

0.25

0.30

0.35

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.10

0.15

0.20

0.25

0.30

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

20

40

60

80

100

120

140

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 68: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read and write requests under the PF-TL and the
fast RW-RNLP. Here,m = 18, Lri = 60µs, Lwi = 60µs, nr = 64, and
|Di | = 1 for each request Ri . Each request was randomly chosen
to be a read (as opposed to a write) with probability as shown.

0 20 40 60 80 100
Percent Reads

0.10

0.15

0.20

0.25

0.30

0.35

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.10

0.15

0.20

0.25

0.30

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

50

100

150

200

250

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 69: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here,m = 18, Lri = 100µs, Lwi = 100µs, nr = 64, and
|Di | = 1 for each request Ri . Each request was randomly chosen
to be a read (as opposed to a write) with probability as shown.

0 20 40 60 80 100
Percent Reads

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

10

20

30

40

50

60

70

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 70: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read and write requests under the PF-TL and the
fast RW-RNLP. Here,m = 36, Lri = 20µs, Lwi = 20µs, nr = 56, and
|Di | = 1 for each request Ri . Each request was randomly chosen
to be a read (as opposed to a write) with probability as shown.

0 20 40 60 80 100
Percent Reads

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)
R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 71: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read and write requests under the PF-TL and the
fast RW-RNLP. Here,m = 36, Lri = 60µs, Lwi = 60µs, nr = 56, and
|Di | = 1 for each request Ri . Each request was randomly chosen
to be a read (as opposed to a write) with probability as shown.

0 20 40 60 80 100
Percent Reads

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

50

100

150

200

250

300

350

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 72: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here,m = 36, Lri = 100µs, Lwi = 100µs, nr = 56, and
|Di | = 1 for each request Ri . Each request was randomly chosen
to be a read (as opposed to a write) with probability as shown.

0 20 40 60 80 100
Percent Reads

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)
R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

10

20

30

40

50

60

70

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 73: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read and write requests under the PF-TL and the
fast RW-RNLP. Here,m = 36, Lri = 20µs, Lwi = 20µs, nr = 64, and
|Di | = 1 for each request Ri . Each request was randomly chosen
to be a read (as opposed to a write) with probability as shown.

0 20 40 60 80 100
Percent Reads

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 74: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read and write requests under the PF-TL and the
fast RW-RNLP. Here,m = 36, Lri = 60µs, Lwi = 60µs, nr = 64, and
|Di | = 1 for each request Ri . Each request was randomly chosen
to be a read (as opposed to a write) with probability as shown.

0 20 40 60 80 100
Percent Reads

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.2

0.3

0.4

0.5

0.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)
R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

50

100

150

200

250

300

350

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

R-NN - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - PF-TL
W-NN - PF-TL

(c) Blocking.
Figure 75: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under the PF-TL and the fast
RW-RNLP. Here,m = 36, Lri = 100µs, Lwi = 100µs, nr = 64, and
|Di | = 1 for each request Ri . Each request was randomly chosen
to be a read (as opposed to a write) with probability as shown.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

10

20

30

40

50

60

70

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

35

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 76: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under theRW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 20µs, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 77: (a) Lock and (b) unlock overheads and (c) blocking for
nested and non-nested read and write requests under the RW-
RNLP and the fast RW-RNLP. Here, for each request Ri , Li =
20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2 for
nested requests. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 0.2. Due to write expansion, |Di | was
inflated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1

2

3

4

5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 78: (a) Lock and (b) unlock overheads and (c) blocking for
nested and non-nested read and write requests under the RW-
RNLP and the fast RW-RNLP. Here, for each request Ri , Li =
20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2 for
nested requests. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 0.5. Due to write expansion, |Di | was
inflated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 79: (a) Lock and (b) unlock overheads and (c) blocking for
nested and non-nested read and write requests under the RW-
RNLP and the fast RW-RNLP. Here, for each request Ri , Li =
20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2 for
nested requests. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 0.8. Due to write expansion, |Di | was
inflated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1

2

3

4

5

6

7

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 80: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 20µs, nr = 64,
and |Di | = 2. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

10

20

30

40

50

60

70

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

35

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

20

40

60

80

100

120

140

160

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 81: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under theRW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 20µs, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 82: (a) Lock and (b) unlock overheads and (c) blocking for
nested and non-nested read and write requests under the RW-
RNLP and the fast RW-RNLP. Here, for each request Ri , Li =
20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2 for
nested requests. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 0.2. Due to write expansion, |Di | was
inflated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 83: (a) Lock and (b) unlock overheads and (c) blocking for
nested and non-nested read and write requests under the RW-
RNLP and the fast RW-RNLP. Here, for each request Ri , Li =
20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2 for
nested requests. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 0.5. Due to write expansion, |Di | was
inflated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 84: (a) Lock and (b) unlock overheads and (c) blocking for
nested and non-nested read and write requests under the RW-
RNLP and the fast RW-RNLP. Here, for each request Ri , Li =
20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2 for
nested requests. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 0.8. Due to write expansion, |Di | was
inflated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 85: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 20µs, nr = 64,
and |Di | = 2. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

35

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

16

18

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

10

20

30

40

50

60

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 86: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under theRW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 20µs, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 87: (a) Lock and (b) unlock overheads and (c) blocking for
nested and non-nested read and write requests under the RW-
RNLP and the fast RW-RNLP. Here, for each request Ri , Li =
20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2 for
nested requests. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 0.2. Due to write expansion, |Di | was
inflated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 88: (a) Lock and (b) unlock overheads and (c) blocking for
nested and non-nested read and write requests under the RW-
RNLP and the fast RW-RNLP. Here, for each request Ri , Li =
20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2 for
nested requests. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 0.5. Due to write expansion, |Di | was
inflated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 89: (a) Lock and (b) unlock overheads and (c) blocking for
nested and non-nested read and write requests under the RW-
RNLP and the fast RW-RNLP. Here, for each request Ri , Li =
20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2 for
nested requests. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 0.8. Due to write expansion, |Di | was
inflated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 90: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 20µs, nr = 64,
and |Di | = 2. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

35

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

16

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 91: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under theRW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 60µs, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 92: (a) Lock and (b) unlock overheads and (c) blocking for
nested and non-nested read and write requests under the RW-
RNLP and the fast RW-RNLP. Here, for each request Ri , Li =
60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2 for
nested requests. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 0.2. Due to write expansion, |Di | was
inflated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1

2

3

4

5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 93: (a) Lock and (b) unlock overheads and (c) blocking for
nested and non-nested read and write requests under the RW-
RNLP and the fast RW-RNLP. Here, for each request Ri , Li =
60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2 for
nested requests. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 0.5. Due to write expansion, |Di | was
inflated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 94: (a) Lock and (b) unlock overheads and (c) blocking for
nested and non-nested read and write requests under the RW-
RNLP and the fast RW-RNLP. Here, for each request Ri , Li =
60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2 for
nested requests. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 0.8. Due to write expansion, |Di | was
inflated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 95: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 60µs, nr = 64,
and |Di | = 2. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

16

18

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1

2

3

4

5

6

7

8

9

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

20

40

60

80

100

120

140

160

180

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 96: (a) Lock and (b) unlock overheads and (c) blocking for
non-nested read andwrite requests under theRW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 60µs, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 97: (a) Lock and (b) unlock overheads and (c) blocking for
nested and non-nested read and write requests under the RW-
RNLP and the fast RW-RNLP. Here, for each request Ri , Li =
60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2 for
nested requests. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 0.2. Due to write expansion, |Di | was
inflated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 98: (a) Lock and (b) unlock overheads and (c) blocking for
nested and non-nested read and write requests under the RW-
RNLP and the fast RW-RNLP. Here, for each request Ri , Li =
60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2 for
nested requests. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 0.5. Due to write expansion, |Di | was
inflated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 99: (a) Lock and (b) unlock overheads and (c) blocking for
nested and non-nested read and write requests under the RW-
RNLP and the fast RW-RNLP. Here, for each request Ri , Li =
60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2 for
nested requests. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 0.8. Due to write expansion, |Di | was
inflated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 100: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 60µs, nr = 64,
and |Di | = 2. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

20

40

60

80

100

120

140

160

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 101: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri , Li = 60µs, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 102: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 103: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 104: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 105: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 60µs, nr = 64,
and |Di | = 2. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

250

300

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 106: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri , Li = 100µs, nr =
64, and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 107: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.2 and
to be a nested request with probability 0.2. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1

2

3

4

5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 108: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.2 and
to be a nested request with probability 0.5. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 109: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.2 and
to be a nested request with probability 0.8. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 110: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 100µs, nr = 64,
and |Di | = 2. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

16

18

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1

2

3

4

5

6

7

8

9

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

250

300

350

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 111: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri , Li = 100µs, nr =
64, and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 112: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.5 and
to be a nested request with probability 0.2. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 113: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.5 and
to be a nested request with probability 0.5. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 114: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.5 and
to be a nested request with probability 0.8. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 115: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 100µs, nr = 64,
and |Di | = 2. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

250

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 116: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri , Li = 100µs, nr =
64, and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 117: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.8 and
to be a nested request with probability 0.2. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 118: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.8 and
to be a nested request with probability 0.5. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 119: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.8 and
to be a nested request with probability 0.8. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 120: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 100µs, nr = 64,
and |Di | = 2. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

10

20

30

40

50

60

70

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

35

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 121: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri , Li = 20µs, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

16

18

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 122: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 123: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 124: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 125: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 20µs, nr = 64,
and |Di | = 4. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

10

20

30

40

50

60

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

20

40

60

80

100

120

140

160

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 126: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri , Li = 20µs, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 127: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 128: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 129: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 130: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 20µs, nr = 64,
and |Di | = 4. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

10

20

30

40

50

60

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 131: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri , Li = 20µs, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 132: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 133: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 134: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 135: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 20µs, nr = 64,
and |Di | = 4. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

35

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

16

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 136: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri , Li = 60µs, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 137: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 138: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 139: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 140: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 60µs, nr = 64,
and |Di | = 4. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 141: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri , Li = 60µs, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 142: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 143: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 144: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 145: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 60µs, nr = 64,
and |Di | = 4. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

20

40

60

80

100

120

140

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 146: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri , Li = 60µs, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 147: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 148: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 149: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 150: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 60µs, nr = 64,
and |Di | = 4. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

250

300

350

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 151: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri , Li = 100µs, nr =
64, and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 152: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.2 and
to be a nested request with probability 0.2. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 153: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.2 and
to be a nested request with probability 0.5. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 154: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.2 and
to be a nested request with probability 0.8. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 155: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 100µs, nr = 64,
and |Di | = 4. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1

2

3

4

5

6

7

8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

250

300

350

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 156: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri , Li = 100µs, nr =
64, and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 157: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.5 and
to be a nested request with probability 0.2. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 158: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.5 and
to be a nested request with probability 0.5. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 159: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.5 and
to be a nested request with probability 0.8. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 160: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 100µs, nr = 64,
and |Di | = 4. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

250

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 161: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri , Li = 100µs, nr =
64, and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 162: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.8 and
to be a nested request with probability 0.2. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 163: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.8 and
to be a nested request with probability 0.5. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 164: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.8 and
to be a nested request with probability 0.8. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 165: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 100µs, nr = 64,
and |Di | = 4. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

10

20

30

40

50

60

70

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

35

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 166: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri , Li = 20µs, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 167: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 168: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 169: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 170: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 20µs, nr = 64,
and |Di | = 6. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

10

20

30

40

50

60

70

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

35

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

20

40

60

80

100

120

140

160

180

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 171: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri , Li = 20µs, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 172: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 173: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 174: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 175: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 20µs, nr = 64,
and |Di | = 6. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

35

40

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

10

20

30

40

50

60

70

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 176: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri , Li = 20µs, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 177: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 178: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 179: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 180: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 20µs, nr = 64,
and |Di | = 6. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

16

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 181: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri , Li = 60µs, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 182: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 183: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 184: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 185: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 60µs, nr = 64,
and |Di | = 6. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

20

40

60

80

100

120

140

160

180

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 186: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri , Li = 60µs, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 187: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 188: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 189: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 190: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 60µs, nr = 64,
and |Di | = 6. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

20

40

60

80

100

120

140

160

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 191: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri , Li = 60µs, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 192: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 193: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 194: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 195: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 60µs, nr = 64,
and |Di | = 6. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

250

300

350

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 196: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri , Li = 100µs, nr =
64, and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 197: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.2 and
to be a nested request with probability 0.2. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 198: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.2 and
to be a nested request with probability 0.5. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 199: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.2 and
to be a nested request with probability 0.8. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 200: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 100µs, nr = 64,
and |Di | = 6. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1

2

3

4

5

6

7

8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

250

300

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 201: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri , Li = 100µs, nr =
64, and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 202: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.5 and
to be a nested request with probability 0.2. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 203: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.5 and
to be a nested request with probability 0.5. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 204: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.5 and
to be a nested request with probability 0.8. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 205: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 100µs, nr = 64,
and |Di | = 6. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1

2

3

4

5

6

7

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

50

100

150

200

250

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 206: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri , Li = 100µs, nr =
64, and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 0.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 207: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.8 and
to be a nested request with probability 0.2. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 208: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.8 and
to be a nested request with probability 0.5. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 209: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
Li = 100µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly cho-
sen to be a read (as opposed to a write) with probability 0.8 and
to be a nested request with probability 0.8. Due to write expan-
sion, |Di | was inflated to 64 for all write requests under the RW-
RNLP, as read requests can access any resource.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 210: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , Li = 100µs, nr = 64,
and |Di | = 6. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 1. Due to write expansion, |Di | was in-
flated to 64 for all write requests under the RW-RNLP, as read
requests can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 211: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 0.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

6

7

8

9

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 212: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

6

7

8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 213: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

6

7

8

9

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

6

7

8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 214: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

6

7

8

9

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

6

7

8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 215: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri ,m = 18, nr = 64, and
|Di | = 2. Each request was randomly chosen to be a read (as op-
posed to a write) with probability 0.2 and to be a nested request
with probability 1. Due to write expansion, |Di | was inflated to
64 for all write requests under the RW-RNLP, as read requests
can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 216: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 0.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 217: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

6

7

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 218: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

6

7

8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 219: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

6

7

8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 220: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri ,m = 18, nr = 64, and
|Di | = 2. Each request was randomly chosen to be a read (as op-
posed to a write) with probability 0.5 and to be a nested request
with probability 1. Due to write expansion, |Di | was inflated to
64 for all write requests under the RW-RNLP, as read requests
can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

14

16

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

20

40

60

80

100

120

140

160

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 221: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 0.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 222: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 223: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 224: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 225: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri ,m = 18, nr = 64, and
|Di | = 2. Each request was randomly chosen to be a read (as op-
posed to a write) with probability 0.8 and to be a nested request
with probability 1. Due to write expansion, |Di | was inflated to
64 for all write requests under the RW-RNLP, as read requests
can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

250

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 226: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 0.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

6

7

8

9

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 227: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 228: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 229: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 230: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri ,m = 18, nr = 64, and
|Di | = 4. Each request was randomly chosen to be a read (as op-
posed to a write) with probability 0.2 and to be a nested request
with probability 1. Due to write expansion, |Di | was inflated to
64 for all write requests under the RW-RNLP, as read requests
can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

14

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 231: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 0.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 232: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 233: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 234: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 235: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri ,m = 18, nr = 64, and
|Di | = 4. Each request was randomly chosen to be a read (as op-
posed to a write) with probability 0.5 and to be a nested request
with probability 1. Due to write expansion, |Di | was inflated to
64 for all write requests under the RW-RNLP, as read requests
can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

14

16

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

20

40

60

80

100

120

140

160

180

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 236: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 0.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 237: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 238: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

14

16

18

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 239: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 240: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri ,m = 18, nr = 64, and
|Di | = 4. Each request was randomly chosen to be a read (as op-
posed to a write) with probability 0.8 and to be a nested request
with probability 1. Due to write expansion, |Di | was inflated to
64 for all write requests under the RW-RNLP, as read requests
can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

250

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 241: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 0.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 242: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 243: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 244: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 245: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri ,m = 18, nr = 64, and
|Di | = 6. Each request was randomly chosen to be a read (as op-
posed to a write) with probability 0.2 and to be a nested request
with probability 1. Due to write expansion, |Di | was inflated to
64 for all write requests under the RW-RNLP, as read requests
can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

14

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 246: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 0.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 247: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 248: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 249: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 250: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri ,m = 18, nr = 64, and
|Di | = 6. Each request was randomly chosen to be a read (as op-
posed to a write) with probability 0.5 and to be a nested request
with probability 1. Due to write expansion, |Di | was inflated to
64 for all write requests under the RW-RNLP, as read requests
can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

14

16

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

20

40

60

80

100

120

140

160

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 251: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 0.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 252: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 253: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

14

16

18

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 254: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 255: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri ,m = 18, nr = 64, and
|Di | = 6. Each request was randomly chosen to be a read (as op-
posed to a write) with probability 0.8 and to be a nested request
with probability 1. Due to write expansion, |Di | was inflated to
64 for all write requests under the RW-RNLP, as read requests
can access any resource.

0 20 40 60 80 100
CS Length

0

10

20

30

40

50

60

70

80

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

30

35

40

45

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

250

300

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 256: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 0.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 257: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 258: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 259: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 260: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri ,m = 36, nr = 64, and
|Di | = 2. Each request was randomly chosen to be a read (as op-
posed to a write) with probability 0.2 and to be a nested request
with probability 1. Due to write expansion, |Di | was inflated to
64 for all write requests under the RW-RNLP, as read requests
can access any resource.

0 20 40 60 80 100
CS Length

0

10

20

30

40

50

60

70

80

90

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

10

20

30

40

50

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

250

300

350

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 261: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 0.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

30

35

40

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

14

16

18

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 262: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

30

35

40

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 263: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

30

35

40

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 264: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

30

35

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 265: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri ,m = 36, nr = 64, and
|Di | = 2. Each request was randomly chosen to be a read (as op-
posed to a write) with probability 0.5 and to be a nested request
with probability 1. Due to write expansion, |Di | was inflated to
64 for all write requests under the RW-RNLP, as read requests
can access any resource.

0 20 40 60 80 100
CS Length

0

20

40

60

80

100

120

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

10

20

30

40

50

60

70

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

250

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 266: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 0.

0 20 40 60 80 100
CS Length

0

10

20

30

40

50

60

70

80

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 267: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

20

40

60

80

100

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 268: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

20

40

60

80

100

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 269: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 2

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

20

40

60

80

100

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 270: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri ,m = 36, nr = 64, and
|Di | = 2. Each request was randomly chosen to be a read (as op-
posed to a write) with probability 0.8 and to be a nested request
with probability 1. Due to write expansion, |Di | was inflated to
64 for all write requests under the RW-RNLP, as read requests
can access any resource.

0 20 40 60 80 100
CS Length

0

10

20

30

40

50

60

70

80

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

30

35

40

45

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

250

300

350

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 271: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 0.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 272: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 273: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

6

7

8

9

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 274: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

6

7

8

9

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 275: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri ,m = 36, nr = 64, and
|Di | = 4. Each request was randomly chosen to be a read (as op-
posed to a write) with probability 0.2 and to be a nested request
with probability 1. Due to write expansion, |Di | was inflated to
64 for all write requests under the RW-RNLP, as read requests
can access any resource.

0 20 40 60 80 100
CS Length

0

10

20

30

40

50

60

70

80

90

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

10

20

30

40

50

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

250

300

350

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 276: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 0.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

6

7

8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 277: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

6

7

8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 278: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

6

7

8

9

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 279: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

6

7

8

9

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 280: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri ,m = 36, nr = 64, and
|Di | = 4. Each request was randomly chosen to be a read (as op-
posed to a write) with probability 0.5 and to be a nested request
with probability 1. Due to write expansion, |Di | was inflated to
64 for all write requests under the RW-RNLP, as read requests
can access any resource.

0 20 40 60 80 100
CS Length

0

20

40

60

80

100

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

10

20

30

40

50

60

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

250

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 281: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 0.

0 20 40 60 80 100
CS Length

0

20

40

60

80

100

120

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 282: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

10

20

30

40

50

60

70

80

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 283: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

10

20

30

40

50

60

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 284: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 4

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

30

35

40

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 285: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri ,m = 36, nr = 64, and
|Di | = 4. Each request was randomly chosen to be a read (as op-
posed to a write) with probability 0.8 and to be a nested request
with probability 1. Due to write expansion, |Di | was inflated to
64 for all write requests under the RW-RNLP, as read requests
can access any resource.

0 20 40 60 80 100
CS Length

0

10

20

30

40

50

60

70

80

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

30

35

40

45

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

250

300

350

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 286: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.2 and to be a nested
request with probability 0.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 287: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 288: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 289: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.2 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 290: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri ,m = 36, nr = 64, and
|Di | = 6. Each request was randomly chosen to be a read (as op-
posed to a write) with probability 0.2 and to be a nested request
with probability 1. Due to write expansion, |Di | was inflated to
64 for all write requests under the RW-RNLP, as read requests
can access any resource.

0 20 40 60 80 100
CS Length

0

10

20

30

40

50

60

70

80

90

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

10

20

30

40

50

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

250

300

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 291: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.5 and to be a nested
request with probability 0.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 292: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 293: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 294: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.5 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 295: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri ,m = 36, nr = 64, and
|Di | = 6. Each request was randomly chosen to be a read (as op-
posed to a write) with probability 0.5 and to be a nested request
with probability 1. Due to write expansion, |Di | was inflated to
64 for all write requests under the RW-RNLP, as read requests
can access any resource.

0 20 40 60 80 100
CS Length

0

20

40

60

80

100

120

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

10

20

30

40

50

60

70

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

50

100

150

200

250

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 296: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, nr = 64,
and |Di | = 1. Each request was randomly chosen to be a read
(as opposed to a write) with probability 0.8 and to be a nested
request with probability 0.

0 20 40 60 80 100
CS Length

0

10

20

30

40

50

60

70

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0

1

2

3

4

5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 297: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.2. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

10

20

30

40

50

60

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 298: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.5. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 299: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, nr = 64, |Di | = 1 for non-nested requests, and |Di | = 6

for nested requests. Each request was randomly chosen to be
a read (as opposed to a write) with probability 0.8 and to be a
nested request with probability 0.8. Due towrite expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
CS Length

0

5

10

15

20

25

30

35

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
CS Length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
CS Length

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 300: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri ,m = 36, nr = 64, and
|Di | = 6. Each request was randomly chosen to be a read (as op-
posed to a write) with probability 0.8 and to be a nested request
with probability 1. Due to write expansion, |Di | was inflated to
64 for all write requests under the RW-RNLP, as read requests
can access any resource.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

6

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

35

40

45

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 301: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, Li = 20µs,
nr = 64, and |Di | = 1. Each request was randomly chosen to be
a read (as opposed to a write) with probability as shown and to
be a nested request with probability 0.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

100

200

300

400

500

600

700

800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 302: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 2 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.2. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

100

200

300

400

500

600

700

800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 303: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 2 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.5. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

100

200

300

400

500

600

700

800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 304: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 2 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.8. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

100

200

300

400

500

600

700

800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 305: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 18, Li = 20µs,
nr = 64, and |Di | = 2. Each request was randomly chosen to be a
read (as opposed to a write) with probability as shown and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

6

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

20

40

60

80

100

120

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 306: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, Li = 60µs,
nr = 64, and |Di | = 1. Each request was randomly chosen to be
a read (as opposed to a write) with probability as shown and to
be a nested request with probability 0.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 307: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 2 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.2. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 308: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 2 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.5. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 309: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 2 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.8. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 310: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 18, Li = 60µs,
nr = 64, and |Di | = 2. Each request was randomly chosen to be a
read (as opposed to a write) with probability as shown and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

50

100

150

200

250

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 311: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, Li = 100µs,
nr = 64, and |Di | = 1. Each request was randomly chosen to be
a read (as opposed to a write) with probability as shown and to
be a nested request with probability 0.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 312: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 2 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.2. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 313: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 2 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.5. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 314: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 2 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.8. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 315: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 18, Li = 100µs,
nr = 64, and |Di | = 2. Each request was randomly chosen to be a
read (as opposed to a write) with probability as shown and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

6

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

35

40

45

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 316: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, Li = 20µs,
nr = 64, and |Di | = 1. Each request was randomly chosen to be
a read (as opposed to a write) with probability as shown and to
be a nested request with probability 0.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

100

200

300

400

500

600

700

800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 317: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 4 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.2. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

100

200

300

400

500

600

700

800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 318: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 4 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.5. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

100

200

300

400

500

600

700

800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 319: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 4 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.8. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

100

200

300

400

500

600

700

800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 320: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 18, Li = 20µs,
nr = 64, and |Di | = 4. Each request was randomly chosen to be a
read (as opposed to a write) with probability as shown and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

20

40

60

80

100

120

140

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 321: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, Li = 60µs,
nr = 64, and |Di | = 1. Each request was randomly chosen to be
a read (as opposed to a write) with probability as shown and to
be a nested request with probability 0.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 322: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 4 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.2. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 323: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 4 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.5. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 324: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 4 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.8. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 325: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 18, Li = 60µs,
nr = 64, and |Di | = 4. Each request was randomly chosen to be a
read (as opposed to a write) with probability as shown and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

50

100

150

200

250

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 326: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, Li = 100µs,
nr = 64, and |Di | = 1. Each request was randomly chosen to be
a read (as opposed to a write) with probability as shown and to
be a nested request with probability 0.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 327: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 4 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.2. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 328: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 4 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.5. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 329: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 4 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.8. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 330: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 18, Li = 100µs,
nr = 64, and |Di | = 4. Each request was randomly chosen to be a
read (as opposed to a write) with probability as shown and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

6

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

35

40

45

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 331: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, Li = 20µs,
nr = 64, and |Di | = 1. Each request was randomly chosen to be
a read (as opposed to a write) with probability as shown and to
be a nested request with probability 0.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

100

200

300

400

500

600

700

800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 332: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 6 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.2. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

100

200

300

400

500

600

700

800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 333: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 6 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.5. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

100

200

300

400

500

600

700

800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 334: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 6 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.8. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

100

200

300

400

500

600

700

800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 335: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 18, Li = 20µs,
nr = 64, and |Di | = 6. Each request was randomly chosen to be a
read (as opposed to a write) with probability as shown and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

20

40

60

80

100

120

140

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 336: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, Li = 60µs,
nr = 64, and |Di | = 1. Each request was randomly chosen to be
a read (as opposed to a write) with probability as shown and to
be a nested request with probability 0.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 337: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 6 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.2. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 338: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 6 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.5. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 339: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 6 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.8. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 340: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 18, Li = 60µs,
nr = 64, and |Di | = 6. Each request was randomly chosen to be a
read (as opposed to a write) with probability as shown and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

50

100

150

200

250

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 341: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, Li = 100µs,
nr = 64, and |Di | = 1. Each request was randomly chosen to be
a read (as opposed to a write) with probability as shown and to
be a nested request with probability 0.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 342: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 6 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.2. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 343: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 6 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.5. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 344: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 6 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.8. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 345: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 18, Li = 100µs,
nr = 64, and |Di | = 6. Each request was randomly chosen to be a
read (as opposed to a write) with probability as shown and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

10

20

30

40

50

60

70

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

35

40

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 346: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, Li = 20µs,
nr = 64, and |Di | = 1. Each request was randomly chosen to be
a read (as opposed to a write) with probability as shown and to
be a nested request with probability 0.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 347: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 2 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.2. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 348: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 2 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.5. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

6

7

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 349: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 2 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.8. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

6

7

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 350: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 36, Li = 20µs,
nr = 64, and |Di | = 2. Each request was randomly chosen to be a
read (as opposed to a write) with probability as shown and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

35

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 351: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, Li = 60µs,
nr = 64, and |Di | = 1. Each request was randomly chosen to be
a read (as opposed to a write) with probability as shown and to
be a nested request with probability 0.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 352: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 2 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.2. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 353: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 2 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.5. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 354: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 2 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.8. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

6

7

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 355: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 36, Li = 60µs,
nr = 64, and |Di | = 2. Each request was randomly chosen to be a
read (as opposed to a write) with probability as shown and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

50

100

150

200

250

300

350

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 356: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, Li = 100µs,
nr = 64, and |Di | = 1. Each request was randomly chosen to be
a read (as opposed to a write) with probability as shown and to
be a nested request with probability 0.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 357: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 2 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.2. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 358: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 2 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.5. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

6

7

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 359: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 2 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.8. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

6

7

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 360: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 36, Li = 100µs,
nr = 64, and |Di | = 2. Each request was randomly chosen to be a
read (as opposed to a write) with probability as shown and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

10

20

30

40

50

60

70

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

35

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 361: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, Li = 20µs,
nr = 64, and |Di | = 1. Each request was randomly chosen to be
a read (as opposed to a write) with probability as shown and to
be a nested request with probability 0.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 362: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 4 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.2. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 363: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 4 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.5. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 364: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 4 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.8. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 365: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 36, Li = 20µs,
nr = 64, and |Di | = 4. Each request was randomly chosen to be a
read (as opposed to a write) with probability as shown and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

35

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 366: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, Li = 60µs,
nr = 64, and |Di | = 1. Each request was randomly chosen to be
a read (as opposed to a write) with probability as shown and to
be a nested request with probability 0.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 367: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 4 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.2. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 368: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 4 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.5. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 369: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 4 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.8. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 370: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 36, Li = 60µs,
nr = 64, and |Di | = 4. Each request was randomly chosen to be a
read (as opposed to a write) with probability as shown and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

50

100

150

200

250

300

350

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 371: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, Li = 100µs,
nr = 64, and |Di | = 1. Each request was randomly chosen to be
a read (as opposed to a write) with probability as shown and to
be a nested request with probability 0.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 372: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 4 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.2. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 373: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 4 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.5. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 374: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 4 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.8. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

35

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 375: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 36, Li = 100µs,
nr = 64, and |Di | = 4. Each request was randomly chosen to be a
read (as opposed to a write) with probability as shown and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

10

20

30

40

50

60

70

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

35

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 376: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, Li = 20µs,
nr = 64, and |Di | = 1. Each request was randomly chosen to be
a read (as opposed to a write) with probability as shown and to
be a nested request with probability 0.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 377: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 6 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.2. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 378: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 6 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.5. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 379: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 6 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.8. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

35

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 380: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 36, Li = 20µs,
nr = 64, and |Di | = 6. Each request was randomly chosen to be a
read (as opposed to a write) with probability as shown and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

35

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

14

16

18

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

50

100

150

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 381: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, Li = 60µs,
nr = 64, and |Di | = 1. Each request was randomly chosen to be
a read (as opposed to a write) with probability as shown and to
be a nested request with probability 0.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 382: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 6 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.2. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 383: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 6 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.5. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 384: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 6 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.8. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 385: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 36, Li = 60µs,
nr = 64, and |Di | = 6. Each request was randomly chosen to be a
read (as opposed to a write) with probability as shown and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

2

4

6

8

10

12

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

50

100

150

200

250

300

350

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 386: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, Li = 100µs,
nr = 64, and |Di | = 1. Each request was randomly chosen to be
a read (as opposed to a write) with probability as shown and to
be a nested request with probability 0.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 387: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 6 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.2. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 388: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 6 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.5. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 389: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs, nr = 64, |Di | = 1 for non-nested requests,
and |Di | = 6 for nested requests. Each request was randomly
chosen to be a read (as opposed to a write) with probability as
shown and to be a nested request with probability 0.8. Due to
write expansion, |Di | was inflated to 64 for all write requests
under the RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Reads

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Reads

0

1

2

3

4

5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Reads

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 390: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 36, Li = 100µs,
nr = 64, and |Di | = 6. Each request was randomly chosen to be a
read (as opposed to a write) with probability as shown and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

1

2

3

4

5

6

7

8

9

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.5

1.0

1.5

2.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

100

200

300

400

500

600

700

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 391: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

12

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

100

200

300

400

500

600

700

800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 392: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

100

200

300

400

500

600

700

800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 393: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.5

1.0

1.5

2.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

200

400

600

800

1000

1200

1400

1600

1800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 394: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

12

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

500

1000

1500

2000

2500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 395: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

500

1000

1500

2000

2500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 396: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.5

1.0

1.5

2.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

500

1000

1500

2000

2500

3000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 397: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs,nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

12

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 398: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs,nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 399: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs,nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

100

200

300

400

500

600

700

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 400: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

12

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

100

200

300

400

500

600

700

800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 401: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

100

200

300

400

500

600

700

800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 402: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

200

400

600

800

1000

1200

1400

1600

1800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 403: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

12

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

500

1000

1500

2000

2500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 404: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

500

1000

1500

2000

2500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 405: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

500

1000

1500

2000

2500

3000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 406: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs,nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

12

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 407: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs,nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 408: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs,nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

100

200

300

400

500

600

700

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 409: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

100

200

300

400

500

600

700

800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 410: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

100

200

300

400

500

600

700

800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 411: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

200

400

600

800

1000

1200

1400

1600

1800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 412: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

12

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

500

1000

1500

2000

2500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 413: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

500

1000

1500

2000

2500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 414: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

500

1000

1500

2000

2500

3000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 415: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs,nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

12

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 416: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs,nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 417: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs,nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

200

400

600

800

1000

1200

1400

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 418: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 419: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 420: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 421: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 422: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 423: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 424: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs,nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 425: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs,nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 426: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs,nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 2 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

200

400

600

800

1000

1200

1400

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 427: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 428: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 429: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 430: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 431: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 432: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 433: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs,nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 434: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs,nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 435: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs,nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 4 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

200

400

600

800

1000

1200

1400

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 436: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 437: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 438: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 439: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 440: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 441: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 442: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs,nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 443: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs,nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

0 20 40 60 80 100
Percent Nested

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

0 20 40 60 80 100
Percent Nested

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

0 20 40 60 80 100
Percent Nested

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 444: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs,nr = 64, |Di | = 1 for non-nested requests, and
|Di | = 6 for nested requests. Each request was randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to
be a nested request with probability as shown. Due to write ex-
pansion, |Di | was inflated to 64 for all write requests under the
RW-RNLP, as read requests can access any resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

20

25

30

35

40

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 445: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, Li = 20µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to
be a nested request with probability 0.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

7

8

9

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

100

200

300

400

500

600

700

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 446: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.2 and to be a nested request with probability 0.2.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

100

200

300

400

500

600

700

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 447: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.2 and to be a nested request with probability 0.5.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

100

200

300

400

500

600

700

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 448: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.2 and to be a nested request with probability 0.8.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

100

200

300

400

500

600

700

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 449: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 18, Li = 20µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

20

25

30

35

40

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 450: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, Li = 20µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to
be a nested request with probability 0.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

100

200

300

400

500

600

700

800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 451: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.5 and to be a nested request with probability 0.2.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

100

200

300

400

500

600

700

800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 452: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.5 and to be a nested request with probability 0.5.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

100

200

300

400

500

600

700

800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 453: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.5 and to be a nested request with probability 0.8.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

100

200

300

400

500

600

700

800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 454: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 18, Li = 20µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

15

20

25

30

35

40

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 455: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, Li = 20µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to
be a nested request with probability 0.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

100

200

300

400

500

600

700

800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 456: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.8 and to be a nested request with probability 0.2.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

100

200

300

400

500

600

700

800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 457: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.8 and to be a nested request with probability 0.5.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

100

200

300

400

500

600

700

800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 458: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 20µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.8 and to be a nested request with probability 0.8.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

100

200

300

400

500

600

700

800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 459: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 18, Li = 20µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

60

70

80

90

100

110

120

130

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 460: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, Li = 60µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to
be a nested request with probability 0.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

200

400

600

800

1000

1200

1400

1600

1800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 461: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.2 and to be a nested request with probability 0.2.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

200

400

600

800

1000

1200

1400

1600

1800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 462: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.2 and to be a nested request with probability 0.5.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

200

400

600

800

1000

1200

1400

1600

1800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 463: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.2 and to be a nested request with probability 0.8.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

200

400

600

800

1000

1200

1400

1600

1800

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 464: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 18, Li = 60µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

60

70

80

90

100

110

120

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 465: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, Li = 60µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to
be a nested request with probability 0.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 466: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.5 and to be a nested request with probability 0.2.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 467: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.5 and to be a nested request with probability 0.5.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 468: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.5 and to be a nested request with probability 0.8.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 469: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 18, Li = 60µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

50

60

70

80

90

100

110

120

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 470: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, Li = 60µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to
be a nested request with probability 0.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 471: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.8 and to be a nested request with probability 0.2.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 472: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.8 and to be a nested request with probability 0.5.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 473: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 60µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.8 and to be a nested request with probability 0.8.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 474: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 18, Li = 60µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

2.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

100

120

140

160

180

200

220

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 475: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, Li = 100µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to
be a nested request with probability 0.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

3000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 476: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs, nr = 64, and |Di | is as shown. Each re-
quest was randomly chosen to be a read (as opposed to a write)
with probability 0.2 and to be a nested request with probability
0.2. Due to write expansion, |Di | was inflated to 64 for all write
requests under the RW-RNLP, as read requests can access any
resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

3000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 477: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs, nr = 64, and |Di | is as shown. Each re-
quest was randomly chosen to be a read (as opposed to a write)
with probability 0.2 and to be a nested request with probability
0.5. Due to write expansion, |Di | was inflated to 64 for all write
requests under the RW-RNLP, as read requests can access any
resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

3000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 478: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs, nr = 64, and |Di | is as shown. Each re-
quest was randomly chosen to be a read (as opposed to a write)
with probability 0.2 and to be a nested request with probability
0.8. Due to write expansion, |Di | was inflated to 64 for all write
requests under the RW-RNLP, as read requests can access any
resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

7

8

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

3000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 479: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 18, Li = 100µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

100

120

140

160

180

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 480: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, Li = 100µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to
be a nested request with probability 0.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 481: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs, nr = 64, and |Di | is as shown. Each re-
quest was randomly chosen to be a read (as opposed to a write)
with probability 0.5 and to be a nested request with probability
0.2. Due to write expansion, |Di | was inflated to 64 for all write
requests under the RW-RNLP, as read requests can access any
resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 482: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs, nr = 64, and |Di | is as shown. Each re-
quest was randomly chosen to be a read (as opposed to a write)
with probability 0.5 and to be a nested request with probability
0.5. Due to write expansion, |Di | was inflated to 64 for all write
requests under the RW-RNLP, as read requests can access any
resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 483: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs, nr = 64, and |Di | is as shown. Each re-
quest was randomly chosen to be a read (as opposed to a write)
with probability 0.5 and to be a nested request with probability
0.8. Due to write expansion, |Di | was inflated to 64 for all write
requests under the RW-RNLP, as read requests can access any
resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 484: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 18, Li = 100µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

80

100

120

140

160

180

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 485: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 18, Li = 100µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to
be a nested request with probability 0.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 486: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs, nr = 64, and |Di | is as shown. Each re-
quest was randomly chosen to be a read (as opposed to a write)
with probability 0.8 and to be a nested request with probability
0.2. Due to write expansion, |Di | was inflated to 64 for all write
requests under the RW-RNLP, as read requests can access any
resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 487: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs, nr = 64, and |Di | is as shown. Each re-
quest was randomly chosen to be a read (as opposed to a write)
with probability 0.8 and to be a nested request with probability
0.5. Due to write expansion, |Di | was inflated to 64 for all write
requests under the RW-RNLP, as read requests can access any
resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 488: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 18, Li = 100µs, nr = 64, and |Di | is as shown. Each re-
quest was randomly chosen to be a read (as opposed to a write)
with probability 0.8 and to be a nested request with probability
0.8. Due to write expansion, |Di | was inflated to 64 for all write
requests under the RW-RNLP, as read requests can access any
resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 489: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 18, Li = 100µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

10

20

30

40

50

60

70

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

25

30

35

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

50

100

150

200

250

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 490: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, Li = 20µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to
be a nested request with probability 0.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

16

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

200

400

600

800

1000

1200

1400

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 491: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.2 and to be a nested request with probability 0.2.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

200

400

600

800

1000

1200

1400

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 492: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.2 and to be a nested request with probability 0.5.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

200

400

600

800

1000

1200

1400

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 493: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.2 and to be a nested request with probability 0.8.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

200

400

600

800

1000

1200

1400

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 494: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 36, Li = 20µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

10

20

30

40

50

60

70

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

25

30

35

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

20

40

60

80

100

120

140

160

180

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 495: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, Li = 20µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to
be a nested request with probability 0.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 496: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.5 and to be a nested request with probability 0.2.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 497: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.5 and to be a nested request with probability 0.5.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 498: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.5 and to be a nested request with probability 0.8.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 499: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 36, Li = 20µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

25

30

35

40

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

20

30

40

50

60

70

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 500: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, Li = 20µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to
be a nested request with probability 0.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

25

30

35

40

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 501: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.8 and to be a nested request with probability 0.2.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 502: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.8 and to be a nested request with probability 0.5.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 503: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 20µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.8 and to be a nested request with probability 0.8.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

200

400

600

800

1000

1200

1400

1600

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 504: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 36, Li = 20µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

25

30

35

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

16

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

60

80

100

120

140

160

180

200

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 505: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, Li = 60µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to
be a nested request with probability 0.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 506: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.2 and to be a nested request with probability 0.2.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 507: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.2 and to be a nested request with probability 0.5.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 508: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.2 and to be a nested request with probability 0.8.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

3000

3500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 509: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 36, Li = 60µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

100

120

140

160

180

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 510: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, Li = 60µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to
be a nested request with probability 0.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 511: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.5 and to be a nested request with probability 0.2.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 512: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.5 and to be a nested request with probability 0.5.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 513: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.5 and to be a nested request with probability 0.8.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 514: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 36, Li = 60µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

7

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

60

70

80

90

100

110

120

130

140

150

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 515: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, Li = 60µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to
be a nested request with probability 0.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 516: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.8 and to be a nested request with probability 0.2.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 517: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.8 and to be a nested request with probability 0.5.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 518: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 60µs, nr = 64, and |Di | is as shown. Each request
was randomly chosen to be a read (as opposed to a write) with
probability 0.8 and to be a nested request with probability 0.8.
Due to write expansion, |Di | was inflated to 64 for all write re-
quests under the RW-RNLP, as read requests can access any re-
source.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 519: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 36, Li = 60µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

100

150

200

250

300

350

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 520: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, Li = 100µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to
be a nested request with probability 0.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 521: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs, nr = 64, and |Di | is as shown. Each re-
quest was randomly chosen to be a read (as opposed to a write)
with probability 0.2 and to be a nested request with probability
0.2. Due to write expansion, |Di | was inflated to 64 for all write
requests under the RW-RNLP, as read requests can access any
resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 522: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs, nr = 64, and |Di | is as shown. Each re-
quest was randomly chosen to be a read (as opposed to a write)
with probability 0.2 and to be a nested request with probability
0.5. Due to write expansion, |Di | was inflated to 64 for all write
requests under the RW-RNLP, as read requests can access any
resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 523: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs, nr = 64, and |Di | is as shown. Each re-
quest was randomly chosen to be a read (as opposed to a write)
with probability 0.2 and to be a nested request with probability
0.8. Due to write expansion, |Di | was inflated to 64 for all write
requests under the RW-RNLP, as read requests can access any
resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1000

2000

3000

4000

5000

6000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 524: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 36, Li = 100µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.2 and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

16

18

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

7

8

9

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

100

150

200

250

300

350

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 525: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, Li = 100µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to
be a nested request with probability 0.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

25

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 526: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs, nr = 64, and |Di | is as shown. Each re-
quest was randomly chosen to be a read (as opposed to a write)
with probability 0.5 and to be a nested request with probability
0.2. Due to write expansion, |Di | was inflated to 64 for all write
requests under the RW-RNLP, as read requests can access any
resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 527: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs, nr = 64, and |Di | is as shown. Each re-
quest was randomly chosen to be a read (as opposed to a write)
with probability 0.5 and to be a nested request with probability
0.5. Due to write expansion, |Di | was inflated to 64 for all write
requests under the RW-RNLP, as read requests can access any
resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 528: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs, nr = 64, and |Di | is as shown. Each re-
quest was randomly chosen to be a read (as opposed to a write)
with probability 0.5 and to be a nested request with probability
0.8. Due to write expansion, |Di | was inflated to 64 for all write
requests under the RW-RNLP, as read requests can access any
resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 529: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 36, Li = 100µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.5 and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

2

4

6

8

10

12

14

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

7

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

100

120

140

160

180

200

220

240

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-NN - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 530: (a) Lock and (b) unlock overheads and (c) blocking
for non-nested read andwrite requests under the RW-RNLP and
the fast RW-RNLP. Here, for each request Ri ,m = 36, Li = 100µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to
be a nested request with probability 0.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

6

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 531: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs, nr = 64, and |Di | is as shown. Each re-
quest was randomly chosen to be a read (as opposed to a write)
with probability 0.8 and to be a nested request with probability
0.2. Due to write expansion, |Di | was inflated to 64 for all write
requests under the RW-RNLP, as read requests can access any
resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 532: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs, nr = 64, and |Di | is as shown. Each re-
quest was randomly chosen to be a read (as opposed to a write)
with probability 0.8 and to be a nested request with probability
0.5. Due to write expansion, |Di | was inflated to 64 for all write
requests under the RW-RNLP, as read requests can access any
resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1

2

3

4

5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s) W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

(c) Blocking.
Figure 533: (a) Lock and (b) unlock overheads and (c) blocking
for nested and non-nested read and write requests under the
RW-RNLP and the fast RW-RNLP. Here, for each request Ri ,
m = 36, Li = 100µs, nr = 64, and |Di | is as shown. Each re-
quest was randomly chosen to be a read (as opposed to a write)
with probability 0.8 and to be a nested request with probability
0.8. Due to write expansion, |Di | was inflated to 64 for all write
requests under the RW-RNLP, as read requests can access any
resource.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

5

10

15

20

25

30

Lo
ck

 O
ve

rh
ea

ds
 (m

ic
ro

se
co

nd
s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(a) Lock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Un
lo

ck
 O

ve
rh

ea
ds

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(b) Unlock overhead.

2 3 4 5 6 7 8 9 10
Level of Nestedness

0

1000

2000

3000

4000

5000

6000

7000

8000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP

(c) Blocking.
Figure 534: (a) Lock and (b) unlock overheads and (c) blocking
for nested read and write requests under the RW-RNLP and the
fast RW-RNLP. Here, for each request Ri , m = 36, Li = 100µs,
nr = 64, and |Di | is as shown. Each requestwas randomly chosen
to be a read (as opposed to a write) with probability 0.8 and to be
a nested request with probability 1. Due to write expansion, |Di |
was inflated to 64 for all write requests under the RW-RNLP, as
read requests can access any resource.

	Abstract
	1 Introduction
	2 Background
	3 The Fast RW-RNLP
	3.1 The RW-RNLP*
	3.2 RW-RNLP* Pi-Blocking Bounds
	3.3 Putting the Pieces Together

	4 Implementation and Evaluation
	4.1 Implementation
	4.2 Evaluation

	5 Conclusion
	References
	A Additional Details
	A.1 Tight Blocking Bounds
	A.2 Linearizability
	A.3 Corner Case for Nested Reads
	A.4 Use of a PF-TL in Nested Routines

	B Additional Graphs

