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ABSTRACT
In prior work on multiprocessor real-time locking protocols, only

protocols within the RNLP family support unrestricted lock nest-

ing while guaranteeing asymptotically optimal priority-inversion

blocking bounds. However, these protocols support nesting at the

expense of increasing the cost of processing non-nested lock re-

quests, which tend to be the common case in practice. To remedy

this situation, a new fast-pathmechanism is presented herein that ex-

tends prior RNLP variants by ensuring that non-nested requests are

processed efficiently. This mechanism yields overhead and blocking

costs for such requests that are nearly identical to those seen in the

most efficient single-resource locking protocols. In experiments,

the proposed fast-path mechanism enabled observed blocking times

for non-nested requests that were up to 17 times lower than under

an existing RNLP variant.
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1 INTRODUCTION
Multicore technologies have the potential to enable a wealth of

new computationally intensive embedded real-time applications,

provided efficient resource-allocation infrastructure is available.

Such infrastructure must necessarily include support for multi-

processor real-time locking protocols. Evidence suggests that the
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ability to nest lock requests to allow a task to access multiple re-

sources simultaneously is commonly required in practice, even

though non-nested requests predominate [1, 3]. However, only a

few protocols exist that support unrestricted nesting, and of those

that do, only those in the RNLP (real-time nested locking protocol)

family provide asymptotically optimal priority-inversion blocking

(pi-blocking) bounds.

The RNLP family includes the basic RNLP [13], which provides

mutex sharing, the RW-RNLP [12], which provides reader/writer

sharing, and the C-RNLP [9], which provides contention-sensitive

mutex sharing. A locking protocol is contention-sensitive if a task’s
pi-blocking time is O(C), where C is the number of tasks actu-

ally contending for the same resources [9]. The key to ensuring

contention-sensitivity is to avoid transitive blocking chains, which
are caused by nested requests andmay create blocking relationships

between otherwise non-conflicting tasks.

To support nested requests, each RNLP variant employs logic

more complicated than that of single-resource protocols. This logic

is the most complex in the C-RNLP because it ensures contention-

sensitivity. The RNLP and the RW-RNLP employ simpler logic

but sacrifice contention-sensitive pi-blocking, even for non-nested

requests. Thus, these protocols support nesting (the less common
case) at the expense of increased processing costs and/or pi-blocking

bounds for non-nested requests (the more common case).

Contributions. Motivated by this observation, we propose a new

fast-pathmechanism for the RNLP family that was designedwith the

twin goals of ensuring non-nested lock requests are (i) contention-
sensitive and (ii) incur low lock/unlock overheads comparable to

those of single-resource protocols. We present this fast-path mech-

anism in the context of a new reader/writer RNLP variant, which

we call the fast RW-RNLP.
1
In reader/writer sharing, read requests

can execute concurrently but write requests require exclusive ac-

cess [6]. Since reader/writer sharing subsumes mutex sharing, the

fast RW-RNLP can be applied to support the latter.

We build directly on two prior protocols. The first is the phase-
fair ticket lock (PF-TL), which is used to provide reader/writer access
to a single resource [4]. The PF-TL is a non-preemptive spin-lock.

The protected resource has two FIFO request queues, one for reads

and one for writes. If both kinds of requests are queued concurrently,

the protocol alternates between read phases wherein read requests

are given preference, and correspondingwrite phases. The PF-TL has
asymptotically optimal pi-blocking bounds and very low runtime

overheads (and is trivially contention-sensitive).

The other protocol we build on is the RW-RNLP. At this point, it

suffices to know that the RW-RNLP uses two queues per resource,

one for readers and one for writers, like the PF-TL does for a single

resource. However, additional complications arise because tasks can

hold multiple resources at the same time. This affects the queueing

logic and the orchestration of phases. The latter becomes more

difficult because different resources may be in different phases.

1
The terminology “fast-in-the-common-case RW-RNLP,” which is obviously too verbose,

would be more technically precise.
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Figure 1: Impact of transitive blocking on non-nested requests.
In (b), Rm−1 requests ℓa and ℓb together using a DGL, as allowed
by the RW-RNLP.

The more complicated queueing logic of the RW-RNLP causes

even non-nested requests to incur higher lock/unlock overheads.

Additionally, such requests do not have contention-sensitive pi-

blocking bounds because they may become part of transitive block-

ing chains caused by nested requests. A simple example is given

in Fig. 1, which depicts two resources ℓa and ℓb , onm processors,

accessed bym write requests, R1, . . . ,Rm , issued in this order. Two

scenarios are shown that result in different pi-blocking times for

request Rm . In inset (a), there are no nested requests, and each

resource is protected by a PF-TL. Here, Rm is pi-blocked by only

one other request, which is clearly in accordance with the defini-

tion of contention-sensitivity. In inset (b), request Rm−1 accesses
both resources, and the RW-RNLP is used. Here, the nested request

Rm−1 forces Rm to be pi-blocked by all other requests, which is

clearly not contention-sensitive.

In our fast RW-RNLP, non-nested requests are immune from

the effects for transitive blocking chains caused by nesting. This

is achieved by employing a modular design that mostly separates

concerns related to handling nested and non-nested requests. This

modular design also facilitates applying the protocol in different

contexts. For example, one of the components we introduce directly

supports constant-time access for all requests in systems of single-

writer, multiple-reader resources, a common use case in embedded

systems [8]. Also, by altering one of the components, contention-

sensitivity can also be ensured for nested requests (like with the

C-RNLP, but at the expense of greater overheads for such requests).

Waiting in the fast RNLP can be realized by either spinning or

suspension, though we consider only the former in detail due to

space constraints. When no nested requests occur, the fast RW-

RNLP functions nearly identically to a set of per-resource PF-TLs.

This similarity is borne out in experiments we conducted in

which lock/unlock overheads and observed pi-blocking times were

recorded for non-nested requests. We found that lock/unlock over-

heads for such requests were nearly identical under the fast RW-

RNLP and PF-TLs. We also found that observed pi-blocking times

for such requests were reduced compared to the RW-RNLP. This

is because such requests require less overhead and are immune to

transitive blocking effects under the fast RW-RNLP.

Organization. In the rest of the paper, we give needed back-

ground (Sec. 2), describe the fast RW-RNLP in detail (Sec. 3), discuss

our experiments (Sec. 4), and conclude (Sec. 5).

2 BACKGROUND
In this section, we present relevant background material.

Task model. We consider the classic sporadic real-time task

model (we assume familiarity with this model) and focus on a

system Γ = {τ1, . . . ,τn } of n tasks scheduled on m processors

by a job-level fixed-priority scheduler (e.g. partitioned, global, or
clustered earliest-deadline-first). We denote an arbitrary job of task

τi as Ji .

Resource model. We assume the existence of nr shared resources,
denoted L = {ℓ1, . . . , ℓnr }. When a job Ji requires access to one

or more of these resources, it issues a request Ri for its needed
resources by invoking a locking protocol. We say that Ri is satisfied
as soon as Ji holds its requested resources and that it has completed
once Ji has released all of those resources. A requestRi is considered
to be active during the time interval that begins with its issuance

and ends with its completion. Whenever job Ji holds any resources,
it is said to be executing within a critical section. We let Li denote
the maximum duration of a critical section of Ji and define Lmax =
max1≤i≤n {Li }.

We allow requests to be nested. The essence of nesting is that jobs

are allowed to hold multiple resources simultaneously. Ordinarily,

nesting is realized by allowing jobs to request different resources

individually. Instead, we assume that such a job requests all of its

needed resources via one request. The resulting functionality is

equivalent to a mechanism called a dynamic group lock (DGL) [11],
which allows groups of resources to be coalesced under one lock

dynamically at runtime. (This is different from ordinary group locks,

which are used to coordinate access to groups of resources that are

statically determined offline.)

The usage of DGLs avoids deadlock. Another way to avoid dead-

lock is by requiring resources to be acquired according to some

prescribed ordering. When using DGLs instead of this approach,

jobs may sometimes have to request resources that are not actually

needed if conditional code exists. For example, if after acquiring

resource ℓa , job Ji acquires one of resources ℓb and ℓc based on

some condition, it would have to acquire all three resources via

one request. While this functionality may seem to put DGLs at a

disadvantage, the usage of DGLs results in the same worst-case

pi-blocking bounds (see below) under all existing RNLP variants as

when resource orderings are enforced.

Given our focus on reader/writer sharing, we classify resource

accesses as either reads or writes: a resource may be accessed by

multiple jobs concurrently for reading but by only one job at a

time for writing. If a job requests multiple resources via one re-

quest, we assume that all such resources are requested for either

reading or writing. Mechanisms for handling mixed requests, com-

prised of both read and write accesses, have been presented in prior

work [11]; our focus is efficiently processing non-nested requests.

If a request Ri is a read (resp., write) request, then we will often

use the notation Rr
i (resp., Rw

i ) to emphasize its type. If its type is

not relevant, then we will simply use Ri . We letDi denote the set of
resources requested by Ri . Additionally, we denote the maximum

critical-section length over all read (resp., write) requests by any

task as Lrmax (resp., L
w
max).

Pi-blocking. When designing a real-time locking protocol, the

primary goal is to enable pi-blocking to be bounded. In the mul-

tiprocessor case, the precise definition of pi-blocking is subtle as

it depends on how waiting is realized (spinning vs. suspension)

and on certain analysis assumptions [2]. Due to space constraints,

we limit our attention to protocols that use spinning to realize

blocking and that are invoked non-preemptively (i.e., a resource-
requesting job is non-preemptive for the entire time it is executing

code involving the acquisition, use, and release of resources), but



suspension-based variants of our fast RW-RNLP can be obtained

by slightly altering the spin-based version presented later. (We are

nearing the completion of a suspension-based implementation and

intend to release it soon.) Non-preemptive execution is an example

of a progress mechanism [2]: it ensures that lock-holding tasks are

not delayed by untimely preemptions and thus make progress. With

spin-based waiting, a job can be considered to be pi-blocked if it is

spinning.
2

Analysis assumptions. In our analysis of pi-blocking, we consider

critical-section lengths and the number of critical sections per job

to be constants, andm and n to be variables, as in prior work [2].

If t is the time at which request Ri is issued, then we define the

contentionCi of Ri to be the number of other active requests at time

t that require resources in commonwithRi . A reader/writer locking

protocol ensures contention-sensitivity for a request Ri if the worst-
case pi-blocking for Ri is O(1) if it is a read request, and O(Ci ) if
it is a write request. These pi-blocking bounds are asymptotically

optimal for non-preemptive, spin-based locking protocols [11].

Related work. In recent years, a number of locking protocols have

been presented that are asymptotically optimal with respect to pi-

blocking. These include RNLP variants [9, 12, 13] that provide fine-
grained lock nesting, meaning that each resource is protected by its

own lock. The only other protocols known to us that provide fine-

grained lock nesting are the multiprocessor bandwidth inheritance

protocol [7] and MrsP [5]; however, neither is optimal in any sense.

To our knowledge, the only existing protocols that distinguish

between read and write requests are single-resource phase-fair

locks and the RW-RNLP, both discussed next.

Phase-fair locks. Given our focus (non-preemptive spin locks),

phase-fair reader/writer locks are perhaps the best contention-sensi-

tive option in terms of lock/unlock costs (i.e., the time required to ac-

quire or release a lock) if all requests are single-resource requests [4].

As noted earlier, a phase-fair lock utilizes two FIFO queues, one for

read requests and one for write requests, and alternates between

read phases and write phases. Several possible implementations of

phase-fair locks were considered by Brandenburg and Anderson [4].

They found the phase-fair ticket-lock (PF-TL) to be comparable to or

better than other phase-fair implementations from the perspective

of lock/unlock costs.

The RW-RNLP. As mentioned earlier, the RW-RNLP uses two

per-resource FIFO queues, one for read requests and one for write re-

quests. Furthermore, it uses a mechanism called request entitlement
to orchestrate reader and writer phases; the entitlement rules de-

termine “who” (reader or writer) must concede to “whom”: entitled

requests do not concede. In Sec. 3, we consider in detail a new vari-

ant of the RW-RNLP, which we call the RW-RNLP*, that is useful for

our purposes. We carefully explain there the concept of entitlement.

The RW-RNLP is actually a family of protocols because waiting can

be realized by spinning or suspension and because different mecha-

nisms for dealing with priority inversions are required depending

on how tasks are scheduled. For the non-preemptive, spin-based

variant of the RW-RNLP (our focus), worst-case pi-blocking isO(1)
for read requests and O(m) for write requests. These bounds are
asymptotically optimal, assuming contention for write requests is

Ω(m).
2
A job can be pi-blocked at release by lower-priority jobs executing non-preemptively.

By our analysis assumptions, this release blocking is asymptotically upper bounded by

the maximum spin blocking for any such jobs, so we focus on spin blocking.
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Figure 2: Example illustrating the rules of the RW-RNLP*.

3 THE FAST RW-RNLP
Our proposed fast RW-RNLP is constructed based on a new variant

of the RW-RNLP called the RW-RNLP* and existing locking proto-

cols. In this section, we describe the RW-RNLP* and its pi-blocking

analysis and then present the fast RW-RNLP.

3.1 The RW-RNLP*
The RW-RNLP* is obtained from the RW-RNLP by altering one

aspect of its design and changing the context in which it is applied.

For each resource ℓa , the RW-RNLP* maintains two queuesQr
a and

Qw
a , for unsatisfied read and write requests, respectively.

Example 3.1. We will use Fig. 2 as a continuing example to illus-

trate important concepts in the design of the RW-RNLP*. Each inset

of this figure shows read and write queues for four resources: ℓ1, ℓ2,
ℓ3, and ℓ4. At the time illustrated in Fig. 2(a), the write request Rw

1

is satisfied for its requested resources D1 = {ℓ1, ℓ2}, as indicated by
being positioned within the circles denoting the resources ℓ1 and
ℓ2. Because Rw

1
is satisfied, it is not in any of the queues. Similarly,

the read request Rr
2
for D2 = {ℓ3, ℓ4} is satisfied.

Basic RW-RNLP* rules. We describe the RW-RNLP* via a set of

rules to which an implementation must conform. With the excep-

tion of Rule P3, all of the rules below are taken directly from [12]. As

we shall see in Sec. 3.2, Rule P3 enables tighter pi-blocking bounds

to be computed in our context.

The first three rules place constraints on how the protocol is

used; the first two essentially enforce non-preemptive scheduling

and the third introduces our specific restricted context.

P1 A resource-holding job is always scheduled.

P2 At mostm jobs may have incomplete resource requests at any

time, at most one per processor.



P3 There is at most one incomplete non-nested write request and

one incomplete nested write request per resource at any time.

While Rule P3 may seem restrictive, it will be upheld by defi-

nition when the RW-RNLP* is applied in the context of the fast

RW-RNLP. It is also trivially upheld in systems with only single-

writer resources, which is common use case we consider later. The

following are general rules that define how requests are processed.

G1 When Ji issues Ri at time t , the timestamp of the request is

recorded: ts(Ri ) := t .

G2 When Ri is satisfied, it is dequeued from either Qr
a (if it is a

read request) or Qw
a (if it is a write request) for each ℓa ∈ Di .

G3 When Ri completes, it unlocks all resources in Di .

G4 Each request issuance or completion occurs atomically. There-

fore, there is a total order on timestamps, and a request cannot

be issued at the same time that a critical section completes.

Example 3.1 (cont’d). Moving from inset (a) to inset (b) in Fig. 2,

four additional requests have been issued. Timestamps are deter-

mined for these requests when they are issued (Rule G1). (In our

examples, jobs issue requests in increasing index order.) The is-

suance of each request occurs atomically (Rule G4), so it is not

possible for two requests to obtain the same timestamp.

The arrow from Rr
3
to Rw

1
indicates that Rr

3
is blocked by Rw

1
.

This blocking relationship is formally defined later and serves to

represent just one such relationship in the system.

Fig. 2(c) depicts the system after Rw
1

has completed. By Rule G3,

it released resources ℓ1 and ℓ2. This enabled both Rr
3
and Rr

5
to

be satisfied for ℓ1 and dequeued from Qr
1
(Rule G2). Similarly, Rw

6

became satisfied for ℓ2.
In moving from inset (b) to inset (c), Rw

7
and Rr

8
have been

issued, and Rr
8
was satisfied immediately. Notice that request Rw

7

for resourcesD7 = {ℓ2, ℓ3, ℓ4}was atomically enqueued onQw
2
,Qw

3
,

andQw
4
. Because such an action is atomic, no cycles among blocked

requests can exist. In an actual implementation, the issuance and

completion of a request would not really occur atomically. However,

an implementation must ensure that these actions have the “effect”

of being atomic. We consider such issues later.

Read and write entitlement. Like the RW-RNLP, the RW-RNLP*

functions by alternating read and write phases. The mechanism

for orchestrating these phases is entitlement, which is defined sepa-

rately for read and write requests below (these definitions are taken

directly from [12]). Intuitively, a request is entitled when it should

be satisfied in the next phase, thus only unsatisfied requests may

be entitled. Together with the reader and writer rules presented

later, the definition of entitlement ensures progress and allows us

to bound pi-blocking times. Below, we use E(Qw
a ) to denote the

earliest-timestamped unsatisfied write request for resource ℓa .

Example 3.1 (cont’d). In Fig. 2(b), E(Qw
2
) = Rw

6
.

Definition 3.1. An unsatisfied read request Rr
i becomes entitled

when there exists ℓa ∈ Di that is write locked, and for each resource
ℓa ∈ Di , E(Qw

a ) is not entitled (see Def. 3.2).3 (Note that E(Qw
a ) = ∅

could hold. In this case, we consider E(Qw
a ) = ∅ to be a “null”

request that is not entitled.) Rr
i remains entitled until it is satisfied.

3
Entitlement is a property of a request, and Def. 3.1 and Def. 3.2 give conditions

upon which a request becomes entitled in terms of the entitlement of other requests.

Therefore, while Def. 3.1 and Def. 3.2 reference each other parenthetically to aid the

reader, they are not in fact circularly defined.

Example 3.1 (cont’d). In Fig. 2(b), Rr
3
and Rr

5
are both entitled

(Def. 3.1): ℓ1 is write locked, and there exists no resource ℓa inD3 or

D5 for which E(Qw
a ) is entitled (Def. 3.2, below). Entitled requests

are indicated in Fig. 2 by a light gray shading.

Definition 3.2. An unsatisfied write request Rw
i becomes entitled

when for each ℓa ∈ Di , Rw
i = E(Qw

a ), no read request in Qr
a is

entitled (see Def. 3.1),
3
and ℓa is not write locked. Rw

i remains

entitled until it is satisfied.

Example 3.1 (cont’d). In Fig. 2(c), Rw
4
is entitled: ℓ1 is the only

resource in D4, E(Qw
1
) = Rw

4
holds, there is no entitled read in Qr

1
,

and ℓ1 is not write locked. In moving from inset (c) to inset (d),

Rw
6

completed and released ℓ2. In Fig. 2(d), Rw
7

is entitled: Rw
7

was

at the head of each of its queues and there were no entitled read

requests in the corresponding read queues, so the only condition

that prevented Rw
7

from being entitled earlier was Rw
6
’s lock on ℓ2.

Rules for read and write requests. We complete our specification

of the RW-RNLP* by stating rules that govern how read and write

requests are processed. To state these rules, we introduce notation

to allow us identify the set of requests on which an entitled request

Ri (a read or a write) is blocked. Specifically, we let B(Ri , t) denote
the set of requests on which such a request Ri is blocked at time t .

Example 3.1 (cont’d). In Fig. 2(b), there are two entitled requests,

Rr
3
and Rr

5
, both waiting on the satisfied write request Rw

1
. If inset

(b) reflects the system state at time t , then B(Rr
3
, t) = {Rw

1
} and

B(Rr
5
, t) = {Rw

1
}. Only one of these relationships is depicted with

an arrow in the diagram to avoid clutter. Similarly, if Fig. 2(c) reflects

the system state at time t ′, then B(Rw
4
, t ′) = {Rr

3
,Rr

5
}. Note that

there are other blocking relationships throughout Fig. 2, but B(Ri , t)
is only defined for Ri at a time t when Ri is entitled.

The rules for read requests are as follows.

R1 When Rr
i is issued, for each ℓa ∈ Di , Rr

i is enqueued in Qr
a .

If Rr
i does not conflict with any entitled or satisfied write

requests, then it is satisfied immediately.

R2 An entitled read request Rr
i is satisfied at the first time instant

t such that B(Rr
i , t) = ∅.

Example 3.1 (cont’d). When Rr
3
and Rr

5
were issued, by Rule R1,

each was enqueued in Qr
1
, as shown in Fig. 2(b). When Rw

1
later

completed at some time t , as shown in Fig. 2(c), B(Rr
3
, t) = ∅ and

B(Rr
5
, t) = ∅ were both established and Rr

3
and Rr

5
were both

satisfied immediately, by Rule R2. Fig. 2(c) also shows Rr
8
being

satisfied immediately after being issued. This occurred by Rule R1,

as no satisfied or entitled write requests for ℓ3 existed at that time.

The rules for write requests are as follows.

W1 When Rw
i is issued, for each ℓa ∈ Di , Rw

i is enqueued in

timestamp order in the write queueQw
a . IfRw

i does not conflict

with any entitled or satisfied requests (read or write), then it

is satisfied immediately.

W2 An entitledwrite requestRw
i is satisfied at the first time instant

t such that B(Rw
i , t) = ∅.

Example 3.1 (cont’d). When Rw
6
was issued prior to the system

state depicted in Fig. 2(b), it was enqueued in Qw
2
, and because it

conflicted with the satisfied request Rw
1
, by Rule W1, it was not

satisfied immediately. Request Rw
1
later completed at some time t ,

as shown in Fig. 2(c), and at that time t , B(Rw
6
, t) = ∅ held, so Rw

6

became satisfied, by Rule W2.
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Write expansion. Aside from Rule P3, the only other difference

between the RW-RNLP* and the RW-RNLP is with regard to a tech-

nique called write expansion, which is employed by the latter but

not the former. Since the RW-RNLP* does not employ write expan-

sion, we have chosen to avoid introducing the necessary formal

machinery to completely define this technique, opting instead for

conveying the general idea behind it with an example.

Example 3.2. The general idea behind write expansion is as fol-

lows. If a write request Rw
i is issued, and if a read request Rr

j that

accesses resources in common with Rw
i could possibly be active

concurrently, then the set of resources requested by Rw
i , Di , must

be expanded to include all resources in D j . An example is given in

Fig. 3. In inset (a), a write request Rw
1

is satisfied, holding the lock

for ℓ3. Inset (b) shows two possible scenarios after the issuance of

Rw
2
, Rw

3
, and Rr

4
, with D2 = {ℓ2, ℓ3}, D3 = {ℓ1}, and D4 = {ℓ1, ℓ2}.

Inset (b)(i), on the left, shows the situation with no write expansion.

Rw
3

requires only resource ℓ1 and thus is immediately satisfied. Rr
4

is then entitled. In inset (b)(ii), Rw
2

and Rw
3

are expanded: because

there exists a read request (namely, Rr
4
) in the system that requires

ℓ1 and ℓ2, Rw
2

must be issued for D2 = {ℓ1, ℓ2, ℓ3} and Rw
3

must be

issued for D3 = {ℓ1, ℓ2}. Therefore, in inset (b)(ii), Rw
3
cannot be

satisfied until Rw
2
completes, though they do not share resources.

Inset (c) shows the situation after Rw
1

has completed. As seen in

inset (c)(i), in the scenario without write expansion, nothing new

happens to the other requests, as Rw
2

cannot proceed ahead of the

entitled read Rr
4
. However, as seen in inset (c)(ii), in the scenario

with write expansion, the completion of Rw
1
makes Rw

2
entitled.

One reason write expansion is used in the RW-RNLP is be-

cause it makes reasoning about the largest possible pi-blocking for

write requests easier. With write expansion, if Rw
i is the earliest-

timestampedwrite among allwrite requests, then it is either entitled
or satisfied, as illustrated in Ex. 3.2 and proven in [12]. Additionally,

write expansion eases certain implementation challenges.

In our setting, write expansion is problematic, as our ultimate

intent is to speed the processing of non-nested requests. With write

expansion, these could be converted into nested requests. However,

removing write expansion under the RW-RNLP* creates additional

complexity with respect to the pi-blocking scenarios that can occur,

and increases worst-case pi-blocking bounds for write requests by

a constant factor compared to the bounds under the RW-RNLP.

3.2 RW-RNLP* Pi-Blocking Bounds
In this section, we derive bounds on the worst-case acquisition delay
experienced by a request under the RW-RNLP*, i.e., the worst-case
time between the issuance and satisfaction of a request. Occasion-

ally, we will find it convenient to distinguish whether a read request

Rr
i or a write request Rw

i is nested or non-nested. For this purpose,

we will use the notation Rr,n
i , Rr,nn

i , Rw,n
i , and Rw,nn

i , where the

superscript “n” (resp., “nn”) means “nested” (resp., “non-nested”).

As in [12], we assume that all lock and unlock invocations take no

time.

The properties needed to derive acquisition-delay bounds are

stated below. Lemma 3.1 and Theorem 3.1 were proved in [12]

(appearing as “Lemma 1” and “Theorem 1” there), and those proofs

are not affected by the changes we made to the RW-RNLP to obtain

the RW-RNLP*. We illustrate each of these properties by referring

to our prior example. The remaining properties either require new

proofs or are entirely new.

Lemma 3.1. A write request Rw
i experiences acquisition delay of

at most Lrmax time units after becoming entitled.

Example 3.1 (cont’d). In insets (c) and (d) of Fig. 2, Rw
4

is simply

waiting for all requests in B(Rw
4
, te ) to complete, where te is the

time when Rw
4

became entitled. It can be shown that no new re-

quests can be added to B(Rw
4
, te ) until Rw

4
is satisfied. Furthermore,

by Def. 3.2, all of the requests in this set are read requests. In this

scenario, Rw
4
waits for two requests to complete before becoming

satisfied, as B(Rw
4
, te ) = {Rr

3
,Rr

5
}. In the worst case, Rw

4
must

wait for Lrmax time units. Note that having multiple reads in the set

B(Rw
4
, te ) does not increase this worst-case acquisition delay.

Theorem 3.1. The worst-case acquisition delay of a read request
Rr
i is at most Lwmax + L

r
max time units.

Example 3.1 (cont’d). Consider Rr
9
in Fig. 2(d). Resource ℓ1 is

currently in a read phase, as Rr
3
and Rr

5
are in their critical sections,

and there is an entitled write request, Rw
4
. Therefore, before Rr

9

is satisfied, the read requests Rr
3
and Rr

5
could take up to Lrmax

time units, and then the write request Rw
4
could take up to Lwmax

additional time units.

Lemma 3.2 below is very similar to Lemma 2 in [12] and much of

the proof given for it is taken verbatim from there. However, new

reasoning is required as we do not employ write expansion.

Lemma 3.2. If Rw
i is the earliest-timestamped active write request

for each resource in Di , then Rw
i will be satisfied within Lwmax +L

r
max

time units.
Proof. An unsatisfied write request Rw

i is either entitled or not.

If Rw
i is entitled, then by Lemma 3.1, it will become satisfied within

Lrmax time units. Otherwise, by Def. 3.2, for some resource ℓa ∈ Di ,
either (i) Rw

i , E(Qw
a ), (ii) some request Rr

x ∈ Qr
a is entitled, or

(iii) ℓa is write locked by some other request. By Rule W1, Cases (i)

and (iii) are not possible because the write queues are timestamp

ordered, and Rw
i is the earliest-timestamped active write request

for each resource in Di . For Case (ii), assume that Rr
x is entitled

and ℓa ∈ Di ∩ Dx . Then, by Def. 3.1, Rr
x is blocked by at least one

satisfied write request Rw
j . By Rule P1 (a resource-holding job is

continually scheduled), all such write requests will complete within



Lwmax time units. At the time t when all such write requests have

completed, by Rule R2, each Rr
x in B(Rw

i , t)will be satisfied, and by
Def. 3.2, Rw

i will be entitled. By Lemma 3.1, Rw
i will subsequently

experience at most Lrmax additional time units of delay before being

satisfied. □

In systems for which each resource is a single-writer resource,

each write request is the earliest-timestamped active write request

for all of its required resources upon release.

Corollary 3.1. If all resources are single-writer resources, then
the worst-case acquisition delay of a write request Rw

i is at most
Lwmax + L

r
max time units.

Lemma 3.3. If no nested write requests are active while the non-
nested requestRw,nn

i is active, and ifRw,nn
i is the earliest-timestamped

active write request for its lone requested resource ℓa in Di , then
Rw,nn
i will be satisfied within Lrmax time units.

Proof. The proof of this lemma differs from that given above

for Lemma 3.2 only in how Case (ii) in that proof is addressed. For

Case (ii) in the context of Lemma 3.3, if the non-nested request

Rr,nn
x is entitled, then by Def. 3.1, it must blocked by a satisfied

write requestRw,nn
j for resource ℓa . However,Rw,nn

i is the earliest-

timestamped request for ℓa , so Case (ii) is actually impossible in the

context of Lemma 3.3. Therefore, Rw,nn
i must be either satisfied

or entitled, and in the latter case, it becomes satisfied within Lrmax
time units, by Lemma 3.1. □

The next two lemmas heavily exploit Rule P3.

Lemma 3.4. After being issued, a nested write request Rw,n
i will

become the earliest-timestamped active write request for all of the
resources in Di within 2Lwmax + L

r
max time units.

Proof. For any resource inDi for whichRw,n
i is not the earliest-

timestamped write request, by Rule P3, the earliest-timestamped

write is a non-nestedwrite request. By Lemma 3.2, each such request

is satisfied within Lwmax+L
r
max time units. By Rule P1, once satisfied,

all such non-nested write requests will complete within Lwmax time

units. Summing these two bounds yields the worst-case bound of

2Lwmax + L
r
max time units stated in the lemma. □

Lemma 3.5. After being issued, a non-nested write request Rw,nn
i

will become the earliest-timestamped active write request for its lone
requested resource ℓa in Di : (i) immediately, if no nested requests are
active while Rw,nn

i is active; (ii) within 4Lwmax + 2L
r
max time units, if

nested requests may be active while Rw,nn
i is active.

Proof. In Case (i), by Rule P3, there are no other write re-

quests accessing ℓa , so Rw,nn
i immediately becomes the earliest-

timestamped request for that resource.

In Case (ii), ifRw,nn
i is not immediately the earliest-timestamped

write request for ℓa , then there exists exactly one nested write

request Rw,n
x that is the earliest-timestamped write request for

ℓa . By Lemma 3.4, Rw,n
x will be the earliest-timestamped request

for all of its requested resources within 2Lwmax + L
r
max time units.

By Lemma 3.2, Rw,n
x will be satisfied within an additional Lwmax +

Lrmax time units. Once it is satisfied, by Rule P1, it will complete

within Lwmax time units. At that time, Rw,nn
i will be the earliest-

timestamped write request for its requested resource. Summing all

the bounds just stated, this occurs within 4Lwmax + 2L
r
max time units

in the worst case. □

Theorem 3.2, given next, provides our desired delay-acquisition

bounds. Together with Theorem 3.1, this theorem implies that all

pi-blocking bounds under the RW-RNLP* are O(1).

Theorem 3.2. The worst-case acquisition delay of a write request
Rw
i is: (i) Lrmax time units, if Rw,nn

i is a non-nested request and no
nested requests are active while Rw,nn

i is active; (ii) 5Lwmax + 3L
r
max

time units, if Rw,nn
i is a non-nested request and nested requests may

be active while Rw,nn
i is active; (iii) 3Lwmax + 2Lrmax time units, if

Rw,n
i is a nested request.
Proof. In Case (i), by Lemma 3.5(i), Rw,nn

i will be the earliest-

timestamped active write request for its lone requested resource as

soon as it is issued. By Lemma 3.3, it will be satisfied within Lrmax
time units.

In Case (ii), by Lemma 3.5(ii), Rw,nn
i will be the earliest-

timestamped active write request for its lone requested resource

within 4Lwmax + 2Lrmax time units. By Lemma 3.2, it will then be

satisfied within Lwmax + L
r
max time units, resulting in a worst-case

acquisition delay of 5Lwmax + 3L
r
max time units.

In Case (iii), by Lemma 3.4, Rw,n
i will be the earliest-time-

stamped active write request for all of its requested resources within

2Lwmax + L
r
max time units. By Lemma 3.2, it is then satisfied within

Lwmax + L
r
max time units, resulting in a worst-case acquisition delay

of 3Lwmax + 2L
r
max time units. □

It can be shown that all of the blocking bounds in Theorem 3.2 are

tight, i.e., scenarios exist in which these exact bounds occur.4 Notice
that, by Theorem 3.1 and Theorem 3.2(i), if non-nested requests are

not affected by nested requests, then read and write requests have

worst-case pi-blocking bounds of only Lwmax + L
r
max and L

r
max time

units, respectively.

3.3 Putting the Pieces Together
In this section, we describe our proposed fast RW-RNLP proto-

col. Our goals for this protocol are threefold: (i) non-nested re-

quests should have low lock/unlock overheads; (ii) such requests

should have contention-sensitive worst-case pi-blocking bounds;

(iii) nested requests should haveworst-case pi-blocking bounds that
are asymptotically the same as under the RW-RNLP. In describing

the fast RW-RNLP below, we verify that Goals (ii) and (iii) are met.

We address Goal (i) later when we discuss an implementation of the

protocol and an experimental evaluation of that implementation.

The fast RW-RNLP is defined by using the lock and unlock rou-

tines of the RNLP, the RW-RNLP*, and ordinary (not phase-fair)

mutex ticket locks (TLs) [10] as subroutines, as shown in Fig. 4.
5

Recall that the RNLP provides mutex sharing and supports nested

requests. Under it, the worst-case pi-blocking of any request is

O(m) [13]. A TL provides mutex sharing for a single resource and

ensures contention-sensitive pi-blocking.

Referring to the fast RW-RNLP structure in Fig. 4, notice that all

read requests (both nested and non-nested) directly invoke the RW-

RNLP*. Furthermore, any nested write request that requires access

to a resource ℓa must first “acquire” that resource within the context

of the RNLP and then invoke the RW-RNLP*. Also, any non-nested

write request for that resource must first “acquire” that resource

within the context of a TL associated with that resource and then

4
See online appendix: http://www.cs.unc.edu/anderson/papers.html.

5
The lock and unlock routines for the RW-RNLP* routines have been denoted in a

slightly abbreviated way. For example, W*_Lock
nn

denotes the lock routine invoked

by non-nested write requests under the RW-RNLP*.
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Figure 4: Fast RW-RNLP structure.

invoke the RW-RNLP*. This overall protocol structure ensures that

Rule P3 is upheld from the perspective of the RW-RNLP*.

Because read requests directly invoke the RW-RNLP*, by The-

orem 3.1, the pi-blocking incurred by them is O(1) in the worst

case (we consider Lmax to be constant). Thus, Goals (ii) and (iii)

above are met for read requests. The following theorem shows that

these goals are also met for write requests; the pi-blocking incurred

by a non-nested write request Rw,nn
i is O(Ci ) in the worst case

(recall that Ci is the contention experienced by request Ri ), and
the pi-blocking incurred by a nested write request is O(m) in the

worst case. (Referring to Goal (iii), we note that the worst-case

pi-blocking for write requests under the RW-RNLP is O(m) [12].6)
Theorem 3.3. Under the fast RW-RNLP, the worst-case acquisition

delay for a write requestRw
i is: (i)Ci·(Lwmax+L

r
max)+Lrmax time units, if

Rw,nn
i is a non-nested request and no nested requests are active while

Rw,nn
i is active; (ii)Ci ·(6Lwmax + 3L

r
max)+ 5Lwmax + 3L

r
max time units,

if Rw,nn
i is a non-nested request and nested requests may be active

while Rw,nn
i is active; (iii) (m−1)·(4Lwmax+2L

r
max)+3Lwmax+2L

r
max

time units, if Rw,n
i is a nested request.

Proof. In Case (i), Rw,nn
i must wait for up to Ci contending

write requests ahead of it in the TL associated with its lone re-

quested resource. By Theorem 3.2(i), each of these write requests

may face an acquisition delay of up to Lrmax time units within the

RW-RNLP* and then execute its critical section for up to Lwmax time

units. Thus, within Ci · (Lwmax + Lrmax) time units after being is-

sued, Rw,nn
i will not be blocked by any write requests in the TL

associated with its requested resource. At that time, Rw,nn
i will

invoke the RW-RNLP* and, again by Theorem 3.2(i), experience

an acquisition delay of up to Lrmax time units. In total, this yields

a worst-case acquisition delay of Ci · (Lwmax + L
r
max) + Lrmax time

units for Rw,nn
i .

Case (ii) is similar to Case (i) except that Theorem 3.2(ii) is applied

instead of Theorem 3.2(i). Thus, the worst-case acquisition delay is

Ci · (6Lwmax + 3L
r
max) + 5Lwmax + 3L

r
max time units.

In Case (iii),Rw,n
i mustwait within the RNLP for up tom−1 other

requests to complete before it can invoke the RW-RNLP*. Arguing

as in the cases above, but this time using Theorem 3.2(iii), a worst-

case acquisition delay of (m − 1) · (4Lwmax + 2L
r
max)+ 3Lwmax + 2L

r
max

time units results. □

Note that, in a system with only single-writer resources, the RW-

RNLP* alone is sufficient and Cor. 3.1 can be applied to show that

all requests incur O(1) pi-blocking with very low constant factors.

To this point, we have fully specified the RW-RNLP* abstractly.

What remains is to devise an actual implementation of it with

reasonable overheads. We consider this issue next.

6
More precisely, the bound presented is (m − 1)(Lwmax + L

r
max).
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Figure 5: Bits in the per-resource rin and rout variables. (A very sim-
ilar figure appears in [4].)

4 IMPLEMENTATION AND EVALUATION
Of the building blocks used to construct the fast RW-RNLP, the TL

and the RNLP have existing implementations [4, 12]. Therefore, it

remains for us to provide an implementation of the RW-RNLP* as

well as an experimental evaluation of the overall fast RW-RNLP.

Recall that we focus on the user-level, spin-based version.

4.1 Implementation
The main challenge in implementing the RW-RNLP* lies in support-

ing the atomicity assumptions inherent in the rule-based specifica-

tion of it. Such assumptions could be supported by encapsulating

certain code regions within lock and unlock calls to an underly-

ing mutex. Indeed, this approach was taken in implementing the

rules of the RW-RNLP [12]. While such an approach introduces

additional pi-blocking, the protected critical sections are usually

very short, so we consider such blocking to be part of the lock

and unlock overhead of the protocol being implemented. Still, we

would like to avoid relying on the use of mutex protocols in this

way if possible, and we want to categorically preclude their use in
implementing the lock and unlock routines for non-nested requests,

as efficiently implementing such routines is the emphasis of this

paper.

With these concerns in mind, we now describe our implementa-

tion of the RW-RNLP*.

Shared variables of the RW-RNLP*. From the point of view of our

implementation, each shared resource ℓa is viewed as pointer to a

structure called res_state, which consists of four shared counters,

rin, rout, win, and wout, as shown in Listing 1. Almost identical

counters to these are used in the PF-TL [4]. Counters win and

wout track the number of write requests for resource ℓa that have

been issued and completed, respectively. Counters rin and rout
similarly count read requests, with the added complexity of storing

information about writes in the bottom byte, as shown in Fig. 5.

Listing 1 shows various constant bit vectors used in our code to

access and manipulate certain bits in rin and rout.

Listing 1 RW-RNLP* Definitions

type res_state: record
rin, rout: unsigned integer initially 0

win, wout: unsigned integer initially 0

constant
RINC 0x100 // reader increment value

WBITS 0xff // writer bits in rin
PRES 0x80 // writer present bit

PHID 0x7f // writer phase ID bits

Non-nested requests in the RW-RNLP*. The lock and unlock rou-

tines for non-nested requests in our implementation are shown

in Listing 2. These are nearly identical to those for the PF-TL [4],

which to our knowledge is the most efficient reader/writer lock for
single-resource requests proposed to date. A non-nested read Rr,nn

i
of a resource ℓa is performed by simply incrementing the number

of readers for ℓa (Line 3) and then spinning if necessary (Line 4). In



particular, if ℓa is currently being written, then Rr,nn
i waits for a

single write request to complete as indicated by either the PRES bit

being cleared or the PHID bits being changed, which indicates that

a new writer has set those bits, and thus a write has completed. To

unlock ℓa , Rr,nn
i simply increments rout by RINC (Line 6).

A non-nestedwriteRw,nn
i of a resource ℓa waits until it holds the

earliest ticket among all write requests for ℓa (Lines 9–10). It then

atomically sets the last byte of ℓa ’s rin variable and determines the

number of read requests for ℓa upon which it must block (Lines 11–

12). Next, it waits until those reads (if any) are complete (Line 13).

When Rw,nn
i completes, it clears the writer byte of ℓa ’s rin variable

(Line 15) and increments its wout counter (Line 16).

Listing 2 RW-RNLP* Routines for Non-Nested Reqs.

1: procedure R*_Locknn(ℓ: ptr to res_state)
2: varw : unsigned int
3: w := fetch&add(ℓ�rin, RINC) & WBITS ▷ In read queue

4: await (w = 0) or (w , (ℓ�rin & WBITS)) ▷ Satisfied

5: procedure R*_Unlocknn(ℓ: ptr to res_state)
6: atomic_add(ℓ�rout, RINC)
7: procedure W*_Lock

nn
(ℓ: ptr to res_state)

8: var rticket, wticket,w : unsigned int
9: wticket := fetch&add(ℓ�win, 1) ▷ In write queue

10: await (wticket = ℓ�wout) ▷ Head of write queue

11: w := PRES | (wticket & PHID)
12: rticket := fetch&add(ℓ�rin, w )

▷ Marked entitled now for all reads to see

13: await (rticket = ℓ�rout) ▷ Satisfied

14: procedure W*_Unlock
nn
(ℓ: ptr to res_state)

15: fetch&and(ℓ�rin, 0xFFFFFF00) ▷ Clear WBITS
16: ℓ�wout := ℓ�wout + 1

Nested requests in the RW-RNLP*. The lock and unlock routines

for nested requests are shown in Listing 3. These routines are very

similar to those in Listing 2, with two notable exceptions. First, an

extra phase has been added to the lock routine for read requests

(Lines 19–21). Introducing this extra phase eliminates unnecessary

writer blocking in one particular corner case.
4
Second, because

requests are now for sets of resources, we need to ensure that such

sets can be enqueued atomically to prevent potential deadlock. (This

is why, as discussed in Sec. 2, resources must be acquired according

to a predetermined order in the variant of the RNLP that does not

use DGLs.) However, it turns out that the only potential deadlock

situation that can occur involves a race condition between nested

readers and nested writers. Furthermore, we discovered that this

race condition can be eliminated by requiring each nested read

request to hold a global PF-TL for writing when updating multiple

read queues (Lines 22–25) and by requiring each nested write re-

quest to hold this PF-TL for reading when it updates multiple write

queues (Lines 36–40). (The calls to the phase-fair lock and unlock

routines in Lines 22, 25, 36, and 40 do not specify input parameters

because we have no need to distinguish different shared resources

protected by these routines.) While using a PF-TL introduces block-

ing overhead, this overhead is only O(1) for write requests, which
require only read access. This is preferable to the blocking overhead

that would result from using a mutex lock.

Clearly, the routines in our implementation are not actually

atomic: each executes over durations of time, not instantaneously.

However, it can be formally shown that each routine is linearizable.
4

That is, for each routine, an instantaneous linearization point can
be defined at which the routine “appears” to take effect atomically.

When viewing these routines in this way, they can be shown to

support the rule-based specification of the RW-RNLP* given earlier.

Listing 3 RW-RNLP* Routines for Nested Reqs.

17: procedure R*_Lockn (D : set of ptr to res_state)
18: varwℓ : unsigned int for each ℓ in D
19: for each ℓ in D :
20: wℓ := ℓ�rin & WBITS
21: await (wℓ = 0) or (wℓ , (ℓ�rin & WBITS))
22: PFTL_W_Lock() ▷ Write-lock global PFTL

23: for each ℓ in D :
24: wℓ := fetch&add(ℓ�rin, RINC) & WBITS
25: PFTL_W_Unlock() ▷ Unlock global PFTL

26: for each ℓ in D :
27: await (wℓ =0)or(wℓ , (ℓ�rin & WBITS)) ▷ Satisfied

28: procedure R*_Unlockn (D : set of ptr to res_state)
29: for each ℓ in D :
30: atomic_add(ℓ�rout, RINC)
31: procedure W*_Lock

n
(D : set of ptr to res_state)

32: var rticketℓ ,wticketℓ ,wℓ :unsigned int for each ℓ in D
33: for each ℓ in D :
34: wticketℓ := fetch&add(ℓ�win, 1) ▷ In write queue

35: await (wticketℓ = ℓ�wout)
▷ Head of all requested write queues now

36: PFTL_R_Lock() ▷ Read-lock global PFTL

37: for each ℓ in D :
38: wℓ := PRES | (wticketℓ & PHID)
39: rticketℓ := fetch&add(ℓ�rin, wℓ )

▷ Marked entitled now for all reads to see

40: PFTL_R_Unlock() ▷ Unlock global PFTL

41: for each ℓ in D :
42: await (rticketℓ = ℓ�rout) ▷ Satisfied

43: procedure W*_Unlock
n
(D : set of ptr to res_state)

44: for each ℓ in D :
45: fetch&and(ℓ�rin, 0xFFFFFF00) ▷ Clear WBITS
46: ℓ�wout := ℓ�wout + 1

4.2 Evaluation
We conducted a user-space experimental evaluation of the fast RW-

RNLP in which lock/unlock overheads and observed blocking times

were recorded under a variety of scenarios. Given the focus of this

paper, we were particularly interested in overheads and blocking

times for non-nested requests. We conducted our experiments on a

dual-socket, 18-cores-per-socket Intel Xeon E5-2699 platform.

In our experiments, we varied a number of experimental param-

eters including the numbers of tasks and resources, nesting depths

and critical-section lengths of requests, and ratios of non-nested

to nested requests and of read to write requests. Each task was

pinned to a single core, and for task counts of up to 18, all tasks

were assigned to the same socket. Each task was configured to issue

lock and unlock calls 1,000 times to simulate behavior that would

generate the worst-case lock overhead and blocking times. In all of

our graphs, we plot these worst-case values, which were obtained

by computing the 99
th

percentile of all recorded results in order

to filter out any spurious measurements (our measurements were

taken at user level, so we have no other means for filtering results

impacted by interrupts).

Overheads and blocking. We compared the considered protocols

on the basis of overhead and blocking: the overhead incurred by a

resource request is the total time spent by it executing lock logic

within lock and unlock routines (including any time spent waiting

to access underlying locks used to enforce atomicity properties

required by that logic); the blocking incurred by the request is the

total time spent by it waiting to access its requested resources. We

measured both overhead and blocking for a number of different

scenarios. Each such scenario was defined by specifying particular

values or ranges for the experimental parameters mentioned above.

In designing the fast RW-RNLP, we have sought to ensure that (i)
non-nested requests have low overhead and experience contention-

sensitive pi-blocking and (ii) nested requests experience pi-blocking
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Figure 6: (a) Lock overheads and (b) blocking for non-nested read
andwrite requestswhenusing PF-TLs versus the fast RW-RNLP. For
each request Ri , Lri = 40µs, Lwi = 40µs, nr = 64, |Di | = 1. Requests
were randomly chosen to be a read (or a write) with probability 0.5.
that is no worse (and hopefully better) than that under the RW-

RNLP. Accordingly, as standards for comparison, we considered

the use of per-resource PF-TLs (which exhibit very low overhead

and are contention-sensitive) in assessing (i) and the RW-RNLP

(of course) in assessing (ii). In the course of our experiments, we

produced hundreds of graphs. The full set of graphs can be found

online.
4
A few graphs that are exemplars of trends seen generally

are discussed in the following observations.

Obs. 1. For non-nested read and write requests, the fast RW-RNLP
and PF-TLs exhibited comparable overheads.

This observation is supported by Fig. 6(a), which plots lock over-

heads for both reads and writes under both the fast RW-RNLP and

PF-TLs as a function of the task count, n. The data in this figure

corresponds to a scenario in which all requests were non-nested,

evenly distributed between reads and writes, and the total number

of resources, nr , was set to 64. The critical section of each request

was configured to have a duration of 40µs. For comparison, lock

overheads for both protocols hold steady in the range of around

1.0µs to 2.5µs for up to 18 tasks, with the fast RW-RNLP having a

slightly higher write-lock overhead than PF-TLs. Beyond 18 tasks,

lock overheads increase under both protocols. This is because, be-

yond a task count of 18, tasks are executing on both sockets of the

considered platform. Notice that, beyond a task count of 18, the

write-lock overheads of both protocols converge, and the read-lock

overhead of the fast RW-RNLP becomes slightly better. We suspect

that the better read-lock overhead of the fast RW-RNLP is due to

reduced cache invalidations of shared lock state caused by contend-

ing write requests, which must first acquire a ticket lock under the

fast RW-RNLP. We omit graphs showing unlock overheads due to

space constraints, but they showed similar trends.
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Figure 7: (a) Overhead and (b) blocking for nested and non-nested
write requests under the RW-RNLP and the fast RW-RNLP. Here,
Lri = 40µs, Lwi = 40µs, nr = 64, |Di | = 1, for non-nested requests, and
|Di | = 4, for nested requests. Requests were chosen to be a read (or
write) with probability 0.5. Data is plotted for the cases of 20% and
80% of requests being nested. Due to write expansion (recall Fig. 3),
Di was inflated to include all 64 resources for writes under the RW-
RNLP.

Obs. 2. In general, overheads increased when using two sockets
instead of one.

This trend is seen in Fig. 6(a), discussed earlier, and also in

Fig. 7(a), considered in detail below. When tasks execute on two

sockets instead of one, overheads due to maintaining cache co-

herency increase. Observe that, in Fig. 6(a), lock overheads under

the fast RW-RNLP are never more than around 0.6µs. This value is
quite small compared to the 40µs critical-section length. Note that

any blocking is mostly a function of critical-section lengths.

Obs. 3. In scenarios with only non-nested requests, the fast RW-
RNLP and PF-TLs exhibited nearly identical blocking.

This observation is clearly supported by Fig. 6(b). Together with

Obs. 1, this observation suggests the viability of providing the fast

RW-RNLP as a general synchronization solution. It can even be

used in systems in which nested requests do not occur with no

detrimental impacts of note.

Obs. 4. In scenarios with both nested and non-nested requests,
overheads for write requests tended to be much lower under the fast
RW-RNLP than under the RW-RNLP.

This observation is supported by Fig. 7(a), which depicts data

from two different scenarios as detailed in the figure’s caption. The

higher overheads under the RW-RNLP are partially due to the use of

write expansion (recall Fig. 3), which increases resource contention.

This increased contention impacts the overhead of write requests, as

they write-lock an underlying PF-TL to update all relevant resource



queues atomically. Note that, under the RW-RNLP, write expansion

forces non-nested write requests to be processed like nested ones.

Notice that Fig. 7 pertains to write requests. The corresponding

read request results atm = 36 show overheads of around 0.3µs for
non-nested requests under the fast RW-RNLP compared to around

0.8µs under the RW-RNLP. Under the fast RW-RNLP, non-nested

requests had higher blocking by about one critical-section length,

and nested read requests had higher overhead (of around 3µs) and
higher blocking by a few critical-section lengths.

Obs. 5. In scenarios with both nested and non-nested requests,
blocking for write requests tended to be much lower under the fast
RW-RNLP than under the RW-RNLP.

This observation is supported by Fig. 7(b), which plots recorded

worst-case blocking times associated with the scenarios in Fig. 7(a).

Form = 36, blocking was 17 times lower under the fast RW-RNLP

than under the RW-RNLP; write expansion increases resource con-

tention, which increases blocking times of the RW-RNLP.

Obs. 6. Non-nested requests exhibited contention-sensitive block-
ing under the fast RW-RNLP but not the RW-RNLP.

This observation is also supported by Fig. 7(b). Notice that, as the

task count increases, the potential for additional blocking increases

due to transitive blocking, which negatively impacts any protocol

that provides no mechanisms for eliminating transitive blocking.

Blocking for non-nested requests under the fast RW-RNLP increases

slowly as the task count increases; withmore tasks, more contention

is possible. In contrast, non-nested write requests are converted

to nested ones under the RW-RNLP due to write expansion. As a

result, their blocking under that protocol is not O(C).
Of relevance to the analysis presented in Sec. 3, Fig. 8 demon-

strates the results of varying the critical-section length while hold-

ing the number of tasks n constant (in our experiments,m and n are

equal). In contrast, in Fig. 7(b) the number of tasks was varied, and

the critical-section length was held constant; the points in Fig. 7(b)

atm = 36 are the same as those in Fig. 8 for Li = 40µs. Note that
varyingm effectively modifies the term Ci for each request Ri .

Obs. 7. Blocking time scaled linearly with critical-section length
for both the fast RW-RNLP and the RW-RNLP.

Fig. 8 illustrates this observation, which reflects expected be-

havior based on the blocking analysis; for each type of request,

the worst-case blocking bound contains both Lwmax and L
r
max terms

with different coefficients depending on the request type.

Although our approach results in higher coefficients for the

nested write requests than the bounds proven for the RW-RNLP,

lower blocking times were generally seen under the fast RW-RNLP.

We suspect this difference is because, under the RW-RNLP, write

expansion guarantees that all write requests conflict.

We also noted differences between nested and non-nested write

requests under the fast RW-RNLP, highlighting the improvement

of O(C) over O(m) blocking. Under the fast RW-RNLP, the O(C)
blocking of non-nested write requests was almost identical to the

O(1) blocking of nested read requests. Thus, there is a significant

benefit that can be gained when contention is guaranteed to be low.

5 CONCLUSION
We have presented a new RNLP variant, the fast RW-RNLP, which

employs a fast-path mechanism to provide contention-sensitive

pi-blocking and low processing costs for non-nested lock requests,

while preserving the RW-RNLP’s asymptotic pi-blocking bounds for

0 20 40 60 80 100
Critical-Section Length (microseconds)

0

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ki
ng

 (m
ic

ro
se

co
nd

s)

W-N - Fast RW-RNLP
R-N - Fast RW-RNLP
W-NN - Fast RW-RNLP
R-NN - Fast RW-RNLP
W-N - RW-RNLP
R-N - RW-RNLP
R-NN - RW-RNLP

Figure 8: Blocking for nested and non-nested write requests under
the RW-RNLP and the fast RW-RNLP. The critical-section length
varies,m = 36, nr = 64, |Di | = 1, for non-nested requests, and |Di | =
4, for nested requests. ( |Di | is inflated to 64 under the RW-RNLP as
above.) A request was chosen to be a write with probability 0.5.

nested requests. While the goal of ensuring contention sensitivity

efficiently in the general case (nested requests) has so far proven to

be elusive, we have shown that it is at least possible to do so for the

common case of non-nested requests even when nested requests

exist. To ensure contention-sensitivity for non-nested requests, we

had to eliminate the write-expansion rule of the RW-RNLP. In our

experiments, this had a positive impact on blocking for all requests.

The fast RW-RNLP has a modular structure that enables different

variants to be applied in different contexts. For example, the RW-

RNLP* gives constant-time access to all resource requests in systems

comprised of single-writer, multiple-reader resources. Additionally,

the RNLP component in Fig. 4 could be replaced by the C-RNLP to

obtain contention-sensitive pi-blocking for nested requests (at the

expense of higher overheads for such requests). Further variants

realize task waiting by suspending tasks rather than by requiring

them to block by spinning; the implementation of one such variant

is in progress. In a future expanded version of this paper, we will

discuss these variants in full. We plan to compare the fast RW-RNLP

to other alternatives by conducting a large-scale overhead-aware

schedulability study. Such a study will allow us to assess the extent

towhich themore efficient processing of non-nested requests affects

the ability to ensure timing correctness in a holistic sense.
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