
The Price of Schedulability in Cyclic Workloads:
The History-vs.-Response-Time-vs.-Accuracy

Trade-Off*
Tanya Amert, Ming Yang, Sergey Voronov, Saujas Nandi, Thanh Vu, James H. Anderson, and F. Donelson Smith

Department of Computer Science, University of North Carolina at Chapel Hill

Abstract—Autonomous vehicles often employ computer-vision
(CV) algorithms that track the movements of pedestrians and
other vehicles to maintain safe distances from them. These algo-
rithms are usually expressed as real-time processing graphs that
have cycles due to back edges that provide history information.
If immediate back history is required, then such a cycle must
execute sequentially. Due to this requirement, any graph that
contains a cycle with utilization exceeding 1.0 is categorically
unschedulable, i.e., bounded graph response times cannot be
guaranteed. Unfortunately, such cycles can occur in practice,
particularly if conservative execution-time assumptions are made,
as befits a safety-critical system. This dilemma can be obviated by
allowing older back history, which enables parallelism in cycle
execution at the expense of possibly affecting the accuracy of
tracking. However, the efficacy of this solution hinges on the
resulting history-vs.-response-time-vs.-accuracy trade-off that it
exposes. In this paper, this trade-off is explored in depth through
both a study of response-time bounds of synthetic task systems
and an experimental study conducted using the open-source
CARLA autonomous-driving simulator. Somewhat surprisingly,
easing away from always requiring immediate back history
proved to have only a marginal impact on accuracy, while greatly
reducing analytical response-time bounds.

Index Terms—autonomous driving, computer vision, cyber-
physical systems, multi-object tracking, real-time systems

I. INTRODUCTION

Semi- and fully autonomous advanced driver-assist systems
(ADASs) have become mainstream, as evidenced by systems
such as Tesla Autopilot and Cadillac Super Cruise that provide
features like adaptive cruise control, automatic lane keeping,
etc. Such capabilities necessitate the anticipation of dangerous
scenarios with enough time for driver or vehicle intervention.
Predicting dangerous situations typically entails tracking dy-
namic objects, such as pedestrians and other vehicles, and
using a motion model to extrapolate future positions.

Cameras are cost-effective sensors, so such multiple-object
tracking (MOT) applications are often image-based, taking
a sequence of video frames from a camera as input, and
maintaining tracks representing the estimated trajectory of
each dynamic object over time. An example is shown in Fig. 1,
where task τ1 uses the track produced by task τ4 during the
prior time step to predict the location of an object in the current
time step, introducing a cyclical dependency on prior results.

*This work was supported by NSF grants CNS 1409175, CNS 1563845,
CNS 1717589, CPS 1837337, CPS 2038855, and CPS 2038960, ARO grants
W911NF-17-1-0294 and W911NF-20-1-0237, ONR grant N00014-20-1-2698,
and funding from General Motors.

𝜏1: Predict 
track 

positions

𝜏2:
Detect 
objects

𝜏3: Match 
detections 

with 
tracks

𝜏4:
Update 
tracks

RGB 
Image

Tracks

Fig. 1: The tracking-by-detection pipeline.

As this example suggests, tracks corresponding to the most
recent prior time step are the typical default for prediction in
MOT applications. Letting p denote the maximum prior-history
requirement—i.e., the maximum difference between the time
step in which the prior data is produced and the time step in
which it is used—this default corresponds to p = 1.

Unfortunately, always insisting on p = 1 for every cycle
can create a troublesome certification dilemma, because any
such cycle must execute sequentially. For example, assuming
p = 1 for the cycle in Fig. 1, an invocation of task τ4 requires
the results of task τ3, which requires the results of task τ1,
which requires the results of task τ4 from the prior time step.
Such sequential execution can be problematic because cycles
with total utilization1 exceeding 1.0 can occur in practice,
particularly if conservative execution-time assumptions are
made, as befits a safety-critical system. For example, such
assumptions may account for tracking many more objects than
would likely be present, and may reflect the presumption of
heavy contention for shared hardware such as caches, memory
banks, and buses, as well as accelerators such as graphics
processing units (GPUs). The over-utilization caused by such
a cycle renders the graph containing it as unschedulable,
i.e., such a cycle precludes analytically guaranteeing bounded
response times for its corresponding graph.

Resolving cycle over-utilization. Assuming p=1, any cycle
with utilization exceeding 1.0 must have its utilization reduced.
There are only two ways to do this (assuming p=1): either the
cycle’s overall execution time must be decreased, or the invo-
cation period of its graph must be increased. However, in any

1A cycle’s total utilization is given by the total worst-case execution time
of all of its nodes (tasks) divided by the corresponding graph’s invocation
period. Worst-case execution times are determined at design time and can be
quite pessimistic in order to ensure that runtime timing violations occur with
vanishingly small probability in any system deemed “schedulable.”

1



production system, the former possibility likely would have
been applied already in the quest to optimize performance.
(Note that simply adding more hardware could violate size,
weight, and power (SWaP) constraints that arise in ADASs.)

The latter possibility, increasing a graph’s invocation period
(i.e., decreasing the invocation rate), has been considered
before, albeit in work that does not focus on real-time con-
straints. This approach equates to using low-frame-rate track-
ing, in which new video frames are available only 5-10 times
per second, rather than the standard 20+ times per second.
However, as shown by Murray [39], a low frame rate can
greatly reduce MOT performance due to larger displacements
of the targets being tracked. This reduced performance can be
mitigated by using an improved detector [41], [42] or motion
model [3]. However, these techniques still completely ignore
large portions of the input data; reducing from 20 frames
per second (FPS) to 5 FPS ignores 75% of the information
potentially available to the CV application!

Recent work by Amert et al. [2] on the real-time analysis of
graph-based task systems with cyclic dependencies suggests a
different way forward: instead of insisting on sequential cycle
execution, which is the root cause of any over-utilization, allow
parallel execution instead by permitting the use of slightly
older history, i.e., p > 1. As shown by Amert et al., allowing
p > 1 enables the computation of response-time bounds
for systems containing cycles with utilization exceeding 1.0.
Furthermore, these bounds decrease as p increases, so even
for a schedulable system, it may be worthwhile to consider
increasing this parameter.

While allowing p > 1 may seem heavy-handed, a graph
containing a cycle with utilization exceeding 1.0 is not
schedulable if p = 1 is assumed. Moreover, recall that p
is a maximum prior-history requirement, meaning that the
oldest data consumed by the `th cycle execution would be
from the kth cycle execution, where k = ` − p. At runtime,
individual graph nodes would likely execute for far less than
their provisioned worst-case execution times, so more recent
history may be available. Thus, a system with p > 1 may have
accuracy close to one with p = 1 while still being analyzable.

Despite these observations, allowing p > 1 is clearly not a
solution that comes entirely “for free”: as p increases, although
response-time bounds may decrease, so too may CV accuracy
decrease due to using older history. This accuracy-versus-
history trade-off is a key issue in the real-time certification
of ADASs of which both CV researchers2 and automotive
designers should be aware, yet it has never been examined in
depth. In an attempt to foster such an awareness, we provide
here the first-ever detailed study of this trade-off. Furthermore,
the analytical benefit of increasing p was not explored in depth
in prior work. In this paper, we perform a large-scale study of
response-time bounds for graph-based task systems containing
cycles.

Schedulability study overview. The response-time analysis

2The fact that this trade-off has not been considered before by CV re-
searchers is not surprising, given its roots in real-time schedulability concerns.

provided by Amert et al. [2] was evaluated with a single case-
study application, but no large-scale study was performed. In
this paper, we explore the impact on analytical response-time
bounds as p increases for a large set of synthetically generated
cycle-containing graph-based task systems, and show that
increasing p from 2 to 4 enables average analytical gains of
up to 37.6%.

Accuracy study overview. In order to observe the impact of
increasing p on the accuracy of a cyclic workload, we consider
an MOT system in which pedestrians and other vehicles are
tracked via images recorded by a camera attached to a moving
vehicle. To explore the history-versus-accuracy trade-off for
tracking in isolation, we first assume that all sensors are
perfect, e.g., using ground-truth positions of all pedestrians
and vehicles in each time step. However, this assumption is
not valid for real-world scenarios, so we also evaluate the
impact given a CV-based object detector rather than ground-
truth data.

We perform our evaluation using CARLA [12], an open-
source simulator designed for research on autonomous-driving
systems, enabling us to generate a broad range of scenarios,
to consider each sensing component independently, and to
consider and evaluate potential modifications to the vehicle’s
behavior based on tracking results. Our results show that
allowing p to increase slightly has only a minor impact on
tracking accuracy, whereas low-frame-rate tracking (effec-
tively enforcing a much higher p, even if more recent results
are available) suffers greatly reduced tracking accuracy. When
using a CV-based object detector, enabling p > 1 resulted in
up to 13.35% higher precision and 8.74% higher accuracy than
using half the original frame rate, as long as the most recent
results were available approximately 80% of the time.

Finally, we present the results of a case study in which we
executed our detector-based MOT application running along-
side other real-time tasks used in automotive applications. We
measured the observed distribution of historical results, and
found that even though the most recent results were only
available approximately 65% of the time, the tracking accuracy
was comparable to sequential execution, and there was only a
5.1% drop in precision.

Organization. The remainder of this paper is organized
as follows. In Sec. II, we discuss the real-time scheduling
implications of varying parallelism and the computation of
response-time bounds. In Sec. III, we discuss the results of
our experimental evaluation of the history-versus-response-
time trade-off. Next, we provide detailed background on the
MOT pipeline in Sec. IV before giving an overview of our
evaluation of the history-versus-accuracy trade-off in Sec. V.
In Sec. VI we discuss the results of our accuracy evaluation,
both when ground-truth detections are used and in the presence
of a CV-based object detector. We present our case study in
Sec. VII and conclude in Sec. VIII.

2



BA D E

C

F

HG I

Fig. 2: A set of nine nodes in two graphs, each containing a
cycle (indicated by the dashed ovals).

𝜏2𝜏1 𝜏3

𝜏5𝜏4

Fig. 3: The task set from Fig. 2 after converting each cycle
to a supernode. Nodes have been relabeled to correspond to
individual sporadic tasks.

II. REAL-TIME SYSTEMS BACKGROUND

In this section, we provide necessary background on the
real-time scheduling and analysis of graphs containing cycles.

A. Real-Time Graph Scheduling

Much prior work on response-time analysis under global
schedulers [11], [18], [31], [32] has assumed the sequential
sporadic task model, in which invocations of the same task
execute sequentially, i.e., no two invocations of task τ1 in
Fig. 1 may execute concurrently. In contrast, full intra-task
parallelism, in which any number of invocations of a given
task may execute concurrently, has been shown to enable much
smaller response-time bounds [17]. However, full parallelism
requires that the utilization of each cycle is low.

Transforming a cyclic graph to a DAG. Prior work on
response-time analysis for graph-based workloads primarily
considers DAGs. Therefore, the nodes comprising any cycle
in a graph must be replaced by a single “supernode” [52]. We
demonstrate scheduling a cycle-containing graph-based task
system using a continuing example.

Ex. 1. Two graph-based applications are depicted in Fig. 2.
In the top graph, nodes {B,C,D,E} form a cycle. As shown
in Fig. 3, this cycle must be converted to a supernode (τ2).
Similarly, nodes {H, I} are merged into τ5 in Fig. 3. ♦

Job Release Job Completion Job Execution

100 105 110 115 120

Time

a)

b) ∙∙∙

c)
𝑟5,22 𝑟5,23 𝑟5,24𝑟5,21

𝐽5,21 𝐽5,22 𝐽5,23 𝐽5,24

𝐽5,21 𝐽5,23

𝐽5,22 𝐽5,24

𝐽5,21

𝐽5,22

𝐽5,23

𝐽5,24

7.4

2.3

4.1

Response time of J5,24: 7.4 time units

Response time of J5,24: 2.3 time units

Response time of J5,24: 4.1 time units

Fig. 4: Scheduling repercussions of the degree of intra-task
parallelism, including a) sequential execution, b) fully parallel
execution, and c) restricted parallelism. Successive jobs are
shaded progressively darker. Assume there are additional tasks
in the system beyond those in Fig. 3, and that the depicted jobs
are scheduled alongside other jobs, which are not shown.

Scheduling DAG-based task sets. After converting a graph
to a DAG, prior work can be leveraged to further transform
the DAG into a set of independent sporadic tasks [35], [52],
[53]; a summary of this process is given by Amert et al. [2].

Scheduling of these tasks depends on the choice of intra-
task parallelism.

Ex. 1 (cont’d). Fig. 4 depicts possible schedules for invoca-
tions (called jobs) of the supernode τ5 on a platform with four
CPUs. The kth job of τ5, J5,k, is released at time r5,k.

In schedule (a), the jobs execute sequentially. Due to jobs of
other tasks (not shown), J5,21 is released at time 100, but not
scheduled until time 114. This delay impacts the subsequent
jobs; J5,24 has a response time of 7.4. However, the p = 2
requirement is met, i.e., J5,21 completes before J5,23 begins.

Schedule (b) shows the result of fully parallel execution.
The response time of J5,24 is reduced to 2.3 time units. ♦

However, unrestricted intra-task parallelism can violate the
dependencies required by back edges in cycles.

Ex. 1 (cont’d). Assume that task τ5, a supernode, was created
from a cycle with worst-case history age p = 2. Thus, job J5,23
requires output from one of jobs J5,21 and J5,22. However, in
schedule (b) of Fig. 4, jobs J5,21, J5,22, and J5,23 all execute
concurrently, violating this precedence constraint. ♦

Unfortunately, sequential execution can result in an un-
schedulable task system. Under the sporadic task model, a
task system τ is comprised of tasks τi, specified as τi =
(Φi, Ti, Ci), where Φi is the release time of the first job of
τi, Ti is the minimum separation between job releases, and
Ci is the worst-case execution time (WCET) of any job of
τi. The maximum WCET of any task is given by Cmax. The
utilization of task τi is given by ui = Ci/Ti, and the total
system utilization is U =

∑
i ui.

3



Task Ci Ti Pi ui

τ1 4 10 m 0.4
τ2 12 10 2 1.2
τ3 2 10 m 0.2
τ4 1 5 m 0.2
τ5 4 5 1 0.8

TABLE I: Task parameters for the task system in Ex. 2,
assuming a platform with m = 3 CPUs.

Ex. 1 (cont’d). If jobs execute sequentially as in Fig. 4(a),
response times can be unbounded for τ5 if u5 > 1.0. ♦

The restricted parallelism sporadic (rp-sporadic) task model
introduced by Amert et al. [2] adds a per-task parallelism
value Pi, which specifies the maximum number of jobs of
τi that may execute concurrently; any Pi ≤ p guarantees
that prior-history requirements are met. Note that this task
model generalizes both sequential (Pi = 1) and fully parallel
(Pi = m, where m is the number of CPUs) execution.
Ex. 1 (cont’d). Restricted intra-task parallelism (P5 = 2) is
shown in schedule (c) of Fig. 4. The response time of J5,24 is
increased to 4.1, but history requirements are respected. ♦

B. Bounding Response Times

Formally, the response time Ri,k of a job Ji,k is the time
between its release, ri,k, and its finish time, fi,k: Ri,k =
fi,k − ri,k. The response times of rp-sporadic tasks can be
bounded using analysis provided by Amert et al. [2]. As in this
prior work, we assume global earliest-deadline first (G-EDF)
scheduling on a system with m CPUs, and that access to any
accelerators (e.g., GPUs) is non-preemptive and managed by
locking protocols. We let Bmax be the duration of the longest
non-preemptive accelerator access, and assume that per-task
WCETs have been inflated to account for locking-protocol-
related blocking.

Feasibility conditions. In addition to the system utilization
constraint of U ≤ m, for an rp-sporadic task system to have
bounded response times, the utilization of any cycle must be at
most Pi. Thus, the second feasibility condition is ∀i : ui ≤ Pi.
Ex. 2. Consider again the task set in Figs. 2 and 3. Possible
parameters of these tasks are given in Table I. For this
example, assume that m = 3. The first feasibility condition
is satisfied, as U = 2.8. Additionally, note that for all tasks,
Pi ≥ ui, so the second feasibility condition is also satisfied.
Furthermore, as Pi ≤ 2 (again assume p = 2 for both cycles),
the precedence constraints are not violated. ♦

Computing response-time bounds. In this paper, we explore
the history-versus-response-time trade-off through an experi-
mental evaluation. For this study, we make use of the closed-
form bound provided by Amert et al. This bound relies on the
summed utilizations and WCETs of the tasks with restricted
parallelism. This required definition, as well as the bound, are
copied below from [2].

Def. 1. (Def. 5 in [2]) Call a task τi p-restricted (parallelism-
restricted) if Pi < m, and non-p-restricted if Pi ≥ m. Also,
let

U bres =
∑

b largest values
τi is p-restricted

ui and Cbres =
∑

b largest values
τi is p-restricted

Ci,

and let Ures = Unres and Cres = Cnres.

Corollary 1. (Cor. 1 in [2]) The response time of any task
τi ∈ τ is bounded by x+ Ti + Ci, where

x =
(m− 1)Cmax +Bmax + 2Cres

m− Ures
. (1)

Furthermore, if there exists Pmin ≥ 1 such that for every p-
restricted task τi, Pi ≥ Pmin, then Ures and Cres in (1) can be
replaced with U `res and C`res, where ` = b(m− 1)/Pminc.

Cor. 1 enables the calculation of an upper-bound on the
response time of any task in the system. To bound the end-to-
end response time of a DAG, we take the maximum sum of
the response times of each task along any path in the DAG.3

Ex. 2 (cont’d). Assume a maximum non-preemptive GPU
access duration of Bmax = 2 time units. For the system
described in Table I, Cmax = 12, C`res = 16, U `res = 2.0.
Cor. 1 gives a value for x of 58. Thus, the end-to-end response
time of the graphs are 72+80+70 = 222 and 64+67 = 131
time units, respectively. ♦

Trading off history and response-time bounds. To compare
bounds between graphs with different periods, we instead refer
to the maximum relative tardiness of a graph. Tardiness is
defined as the amount by which a job misses its deadline:
max{0, fi,k − di,k}, where the absolute deadline di,k is
assumed to be implicit (i.e., di,k = ri,k + Ti). Note that
tardiness cannot be negative. Given a response-time bound R
for a graph, the relative tardiness is given by (R−Ti)/Ti (we
assume every node in a graph shares the same period).
Ex. 2 (cont’d). The graph comprised of tasks τ1, τ2, and τ3
has a period of 10 time units and a response-time bound of
R = 222 time units. Thus, its maximum relative tardiness is
21.2. Similarly, the graph comprised of tasks τ4 and τ5 has a
period of 5 time units and a response-time bound of R = 131
time units, so its maximum relative tardiness is 25.2. ♦

Although the per-task parallelism Pi is constrained from
below by the utilization of a supernode, it can be as high as p,
albeit with a potential loss of algorithmic accuracy. Increasing
Pi can increase Pmin and thus decrease `, leading to drastic
reductions in analytical response-time bounds.
Ex. 2 (cont’d). If we instead set P5 = 2, ` decreases to 1,
reducing C`res and U `res to 12 and 1.2, respectively. As a result,
x = 27.8, so the graphs’ end-to-end response-time bounds are
reduced to 131.3 and 70.6 time units, respectively. Therefore,
the maximum relative tardiness bounds are reduced to 12.1
and 13.1, respectively, a reduction of over 42%. ♦

3Formally, there should be a single source and sink node; if multiple such
nodes exist, a single virtual node can be added with Ci = 0.

4



This example demonstrates that allowing older history to
be used can reduce the analytical bounds on tardiness (and
thus response times) for a task system. In the next section, we
provide an in-depth evaluation of this history-versus-response-
time trade-off.

III. EVALUATING THE HISTORY-VERSUS-RESPONSE-TIME
TRADE-OFF

Given the intuition provided by Ex. 2, we now explore the
impact of changing Pmin on the maximum end-to-end relative
tardiness of a graph-based task system.

A. Experimental Setup

We consider a platform with m = 16 CPUs. Recall from
the response-time bound calculation in Cor. 1 that Bmax is
independent of Pmin. Thus, we did not consider GPU usage
in our experiments (so Bmax = 0). Instead, we focused on the
effects of changing Ures and Cres by increasing Pmin past
the minimum possible value given by the per-task feasibility
condition ui ≤ Pi.

In this study, we generated 200, 000 graph-based task
systems, with system utilizations in the range [2.5, 16]. To
generate a task system, we first chose a target system uti-
lization value, and selected per-task utilizations from a given
distribution (described below) until an additional task would
cause total utilization to exceed m. Then, tasks were randomly
assigned to graphs such that four to eight tasks were assigned
to each graph (once fewer than four tasks remained, the rest
were assigned to a final graph). Finally, edges were selected
with probability 0.3, according to the Erdős-Rényi graph
generation model [16], which is commonly used to generate
random graphs.4

We selected per-task utilizations from two distributions:
uniform and exponential. For the uniform distribution, the
utilization of each task was independently chosen uniformly
from [0, 1.5). Thus, approximately one-third of tasks gener-
ated using this distribution required Pi ≥ 2. When using
the exponential distribution, each task had utilization chosen
independently from an exponential distribution with mean 0.6.
With both distributions, any task with ui ≤ 1 was assumed to
have Pi = m; otherwise, Pi was set to duie. Periods were
chosen per-graph uniformly from [10, 100].

B. Results

After computing the maximum relative tardiness for each
task system, we grouped the results into system-utilization
buckets, with bucket sizes of 1.0 for low system utilizations
to 0.5 for high system utilizations, and report the average
of the maximum relative tardiness values for each utilization
bucket. The results of our tardiness study are shown in Fig. 5
and Fig. 6 for uniform and exponential per-task utilizations,
respectively. Each figure contains three curves, one for each
of three values of Pmin. In this context, Pmin corresponds
to the minimum Pi of any task in the system. To ensure that

4Each of the possible edges in the graph was independently added with
probability 0.3. Note that we do not require a graph to be connected.

4 6 8 10 12 14 16
System Utilization

10

20

30

40

50

M
ax

im
um

 R
el

at
iv

e 
Ta

rd
in

es
s

Pmin=2 Pmin=3 Pmin=4

Fig. 5: Maximum relative tardiness results for uniform per-task
utilizations.

4 6 8 10 12 14 16
System Utilization

10

20

30

40

50

60
M

ax
im

um
 R

el
at

iv
e 

Ta
rd

in
es

s

Pmin=2 Pmin=3 Pmin=4

Fig. 6: Maximum relative tardiness for exponential per-task
utilizations.

Pmin = 2 was valid for each task system, we regenerated the
per-task utilizations (as described in Sec. III-A) if no task had
Pi = 2.

Increasing Pmin corresponds to increasing the value of Pi
for a subset of supernodes in the system, thus allowing more
parallelism through the use of (possibly) older history. Given
Cor. 1, this should decrease the relative tardiness for the task
system. Thus intuition is borne out in both figures. Allowing
Pmin = 3 instead of Pmin = 2 led to a 19.5% reduction
in relative tardiness for uniform tasks, and a 8.5% reduction
for exponential tasks. Allowing instead Pmin = 4 greatly
increased the reduction in relative tardiness, by 37.6% and
27.1% for uniform and exponential tasks, respectively.

These results demonstrate the huge analytical improvement
that can be gained by allowing the use of older historical infor-
mation. However, this gain comes at a price; the accuracy side

5



of the history-versus-response-time-versus-accuracy trade-off
will be explored next, after some necessary background.

IV. MOT BACKGROUND

In this section, we provide background on a Tracking-By-
Detection multi-object tracking pipeline.

A. MOT via Tracking-By-Detection

MOT tracks an unknown number of objects, or targets,
through a scene. A track is a sequence of estimated positions
and sizes (as bounding boxes) of a target over time. A track is
a model of a target’s trajectory, i.e., the sequence of its actual
real-world positions. Time is measured by camera frames.

Tracking-by-detection (TBD) is a common approach to
MOT. This pipeline is illustrated in Fig. 1. The output from
frame t is the set of tracks after frame t. The input to frame
t is an RGB image and the set of tracks from frame t − 1.
We now describe each step, including a few representative
implementations.

Predicting track positions. Given a set of tracks from frame
t − 1, a motion model is used to predict the position (repre-
sented as a bounding box) of each tracked target in frame t.
Ex. 3. Fig. 7 depicts the results of each of the four TBD steps
(the order matches the task indices in Fig. 1) for a given frame.
Dashed boxes in Fig. 7a represent predictions of vehicles’
positions in the current frame. ♦

In order to predict the new position of a target, a model of
its motion must be used to extrapolate from the existing track.
The simplest motion model assumes constant velocity: the two
most recent track positions are used to linearly extrapolate the
next. More advanced motion models use curvilinear extrapo-
lation [48], particle filtering [6], [27], or optical flow [28].

Multi-object detection. The goal of multi-object detection is
to identify the positions of all targets in an RGB image. The
number of targets is not known a priori.
Ex. 3 (cont’d). The detection step outputs a bounding box for
each detected vehicle, as in Fig. 7b. ♦

Multi-object detection is typically performed in two stages:
features are selected from regions in the image, and then each
feature is classified to determine if it is part of a relevant
bounding box. A traditional approach is feature selection
via histogram of oriented gradients (HOG) [9] followed by
classification using linear support vector machines (SVMs).
Recently, deep convolutional neural networks have been used
instead [21], [24], [44].

Matching detections to tracks. Given a set of detected bound-
ing boxes and predictions of new track positions, the percent-
age overlap is compared for all detection-prediction rectan-
gle pairs. The Hungarian method (also known as Munkres’
algorithm) can be used to quickly match detections to predic-
tions [36], [49]. The overlap of two rectangles is computed
using the intersection-over-union measure (IOU) [45], also
known as the Jaccard index. The IoU (a scalar) is the ratio
of the size of the intersection to the size of the union of two

rectangles within an image. The Hungarian algorithm chooses
an assignment of detections to predictions that maximizes the
IoU of the selected pairs. The output of this step is a set
of detection-prediction assignments, as well as the lists of
detections and predictions that are unmatched.
Ex. 3 (cont’d). Matching between detections (solid boxes) and
tracking predictions (dashed boxes) are shown in Fig. 7c. ♦

Updating the tracks. For each prediction that is matched
with a detection, the corresponding track is updated based on
the detected position. Depending on the motion model, the
model is also updated based on the new position. If a track
has enough consecutive unmatched predictions, then it can be
deleted. Unmatched detections potentially correspond to newly
visible objects; for each unmatched detection, a new track is
created. (More complex filtering can be done to handle noisy
detections, if necessary.)
Ex. 3 (cont’d). Tracks corresponding to the two matched
predictions are updated to contain a new position based on
the detection, as shown in Fig. 7d. ♦

B. MOT from a Moving Vehicle

The pipeline described in Sec. IV-A assumes a stationary
camera. For a vehicle-mounted camera, it is necessary to
account for ego-motion, i.e., the motion of the camera itself.

Typical approaches to ego-motion estimation fit into two
categories: simultaneous localization and mapping (SLAM)
methods [7], [14], [37], [38] and structure-from-motion (SfM)
methods [20], [22], [43], [47]. Both approaches leverage the
overlap of static scene content (e.g., road signs, buildings)
between frames, as well as the motion of such content,
to estimate the movement of the camera. SLAM methods
generally assume frames are temporally sequential, whereas
SfM methods allow frames to be processed in any order.

In addition to knowing where the camera moves within the
world, it is also necessary to determine each target’s real-world
position relative to the camera. Stereo-estimation methods [4],
[13], [23], [33], [46], [51], [54], [55] determine the depth
(distance to the 3D scene point) for each pixel by examining
corresponding camera poses for a pair of frames, using either
two cameras mounted on the car, or a single moving camera
at two different points in time.

C. Input for MOT

We can now list the required inputs for the tracking com-
ponent of a TBD-based MOT application in which the camera
is moving. First, to determine the positions of targets relative
to the camera, an RGB image is needed along with a distance
value for each pixel in that image. Then, the detector provides
a set of bounding boxes corresponding to 2D rectangles in
the RGB image. Finally, ego-motion estimation provides the
relative movement of the camera in the 3D world.

In this paper, we use a simulator that provides the ground-
truth position of the camera. Therefore, we do not need to per-
form ego-motion estimation. The primary input we consider is
thus the bounding boxes of the detections. When discussing the

6



(a) Each track (the output of processing the previous frame) is
extrapolated to the current frame based on the choice of motion
model. In this example, four tracks (indicated by dots) are used
to predict the positions of four vehicles in the current frame; three
vehicles are visible, and one is out of view to the right. The predicted
positions for this frame are depicted as dashed rectangles.

(b) Given an RGB image, the detector outputs a bounding box
for each detected object. In this example, a vehicle on the right
occludes another, so only two objects are detected. As the detector
has no knowledge of the mapping from bounding boxes to vehicles,
detected bounding boxes are shown as solid white rectangles, rather
than colored based on the targets being tracked, as in inset (a).

(c) Matching occurs between the predicted positions of each track
and the detected bounding boxes. In this example, two of the four
tracks are matched to a detection.

(d) Tracks matched to a detection are updated with a new position
based on that detection. Unmatched tracks are either deleted (if
unmatched long enough) or updated with the predicted position.

Fig. 7: The output of each step of the TBD pipeline from Fig. 1 for a single camera frame.

results of our evaluation in Sec. VI, we consider first a system
with ground-truth detections in order to evaluate tracking in
isolation, and then a system with CV-based detections. In the
next section, we describe our experimental evaluation of this
history-versus-accuracy trade-off in full.

V. EVALUATING THE HISTORY-VERSUS-ACCURACY
TRADE-OFF

We now describe the experiments we performed to evaluate
the trade-off between history and accuracy. We begin by giving
an overview of our experimental setup and traffic scenario
selection, and then discuss how we varied the age of historical
data provided to the MOT application.

A. Experimental Setup

We conducted our evaluation using CARLA [12], an open-
source urban-driving simulator. CARLA uses Unreal En-
gine 4 [15] to produce photo-realistic scenes combined with
accurate physical models of automobile dynamics. CARLA is
a client-server system. The urban environment and the interac-
tions of all vehicles and pedestrians with it are simulated on the

server. The client sends parameters for steering, acceleration,
and braking to the server, and is controlled manually or via an
agent that implements the perception, planning, and control
elements for driving; in our experiments, the vehicle was
controlled manually. All sensor data is provided by the server,
including physically based graphics renderings of camera
frames. Additionally, the server provides ground-truth data
needed for evaluation, such as the location and orientation
of the camera and each vehicle and pedestrian in the scene.

We evaluated the impact of increasing p in a broad range
of scenarios generated from CARLA. These scenarios need to
be challenging driving situations that require highly accurate
tracking. The CARLA Challenge provides scenarios that are
selected from the NHTSA (National Highway Traffic Safety
Administration) pre-crash typology [40], which provides sce-
narios that are identified as common pre-crash scenarios of all
police-reported crashes. From these scenarios, we selected the
list below, which heavily rely on tracking and prediction, as
our focus. We modified each scenario by adding additional
vehicles and pedestrians to make the tracking task more

7



challenging. In the descriptions that follow, “ego-vehicle”
refers to the vehicle that navigates the scenario.

• Scenario 1: Obstacle avoidance with prior action. As the
ego-vehicle turns right at a red light, an unexpected obsta-
cle (a cyclist) crosses into the road. The ego-vehicle must
perform an emergency brake or an avoidance maneuver.

• Scenario 2: Right turn at an intersection with crossing
traffic. The ego-vehicle must turn right on red at an
intersection and in the presence of crossing traffic. In this
scenario, the ego-vehicle must track all crossing vehicles,
yielding to avoid collisions.

• Scenario 3: Crossing traffic running a red light at an
intersection. As the ego-vehicle enters an intersection
going straight, a vehicle runs a red light from the right.
In this scenario, the ego-vehicle must perform a collision
avoidance maneuver.

• Scenario 4: Unprotected left turn at an intersection
with oncoming traffic. The ego-vehicle must perform
an unprotected left turn at an intersection, yielding to
oncoming traffic.

• Scenario 5: Lane changing to pass a slow-moving lead-
ing vehicle. While driving on the highway, the vehicle
in front of the ego-vehicle rapidly decelerates. The ego-
vehicle must change lanes to avoid a collision, yielding
to traffic in the next lane.

The five scenarios are depicted in Fig. 8. Scenarios 1-
4 feature city driving; Scenario 5 involves highway speeds.
In our experiments, each scene is populated with additional
vehicles and pedestrians that obey all traffic laws (e.g., addi-
tional pedestrians do not enter the road, additional vehicles
and cyclists obey stop lights and lane markings). Scenario 1
features three vehicles and twelve pedestrians. Scenarios 2-
4 have six vehicles, and Scenarios 2 and 4 also have four
pedestrians. Scenario 5 contains eleven vehicles.

B. Varying the Age of History

For our experiments, we implemented the TBD pipeline
in Fig. 1. As described in Sec. I, this graph contains a
cycle comprised of tasks τ1, τ3, and τ4. The prior-history
requirement p for the back edge from τ4 to τ1 is what we
seek to vary; increasing p means that the track prediction step
(τ1) may use less-recently updated tracks to make predictions.

By definition, p is the maximum difference in time steps
between the completion of an invocation of τ4 and when
those results are used by τ1. However, more recent results
can be used, if available. In our evaluation, we represent the
distribution of available prior results using a probability mass
function (PMF), which we represent as a tuple.

To measure the impact of varying p in our experiments, we
executed the code sequentially, and for each invocation of τ1,
we chose the prior history to use based on a random number
sampled from the PMF. For example, for a PMF represented
as (0.8, 0.2), we selected one frame prior with probability 0.8,
and two frames prior with probability 0.2.

We evaluated eight PMFs, listed in Table II, chosen to
answer four questions:

PMF (represented as a tuple)
PMF 1 (0.9, 0.09, 0.009, 0.001)
PMF 2 (0.8, 0.2)
PMF 3 (0.8, 0.02, 0.02, 0.16)
PMF 4 (0.5, 0.4, 0.1)

PMF Hp

(
0,p−1. . . , 0, 1

)
TABLE II: Probability mass functions (PMFs) corresponding
to available history results. The PMFs are described as tuples:
(x, y) indicates that the result of one and two frames prior are
available with probabilities x and y, respectively. In PMF Hp,
0,p−1. . . , 0 denotes a sequence of p− 1 0’s, where p ranges over
(1, ..., 4). Note that the values of each PMF sum to 1.0.

Q1 What if the most recent data are sometimes unavail-
able?

Q2 How much of an impact does the worst-case age have
if the most recent data are usually available?

Q3 Is it better to have a higher chance of more recent data,
or a lower worst-case age?

Q4 How does the average case differ from the worst case?
Comparing PMFs 1 and H1 should answer question Q1.

We can answer question Q2 by comparing PMFs 2 and 3. For
question Q3 we compare PMFs 3 and 4. Finally, we compare
PMFs 1-4 to the corresponding worst-case PMF Hp (e.g.,
PMFs 4 and H3) to answer question Q4.

VI. RESULTS: HISTORY-VERSUS-ACCURACY

We first consider tracking in isolation, i.e., in the presence of
perfect sensors. For each frame of the video, we provide the
ground-truth 3D motion of the camera (representing perfect
ego-motion estimation), ground-truth 2D bounding boxes (as
if from a perfect detector), and the 3D distance to each target
within the scene (corresponding to perfect stereo estimation).
(In Sec. VI-C, we remove the assumption of a perfect detector.)

A. Evaluation Metrics for MOT

In this section, we overview of the standard metrics used to
evaluate MOT applications [49]. We consider first the metrics
defined for each frame and then the high-level MOT metrics.

Per-frame metrics. A track represents not only where a target
is believed to have been, but the ability to predict where it will
be in future frames. Thus, a track for which the prediction
is matched to a detection is considered a true positive, and
we let TPt be the number of such matches for frame t. An
unmatched prediction is a hypothesis that does not correspond
to any detected target (false positive), and an unmatched
detection corresponds to a target for which there is no such
hypothesis (false negative). These are represented by FPt and
FNt, respectively. The ground-truth number of targets present
in frame t is represented by GTt. In the best case, TPt = GTt
and FNt = FPt = 0.

8



(a) Scenario 1: Obstacle avoidance with prior action. (b) Scenario 2: Right turn at an intersection with crossing traffic.

(c) Scenario 3: Crossing traffic running a red light at an inter-
section.

(d) Scenario 4: Unprotected left turn at an intersection with
oncoming traffic.

(e) Scenario 5: Lane changing to pass a slow-moving leading
vehicle.

Fig. 8: The five scenarios we explore. The start position and path of the ego-vehicle are indicated by a yellow star and solid
line, respectively. The cyclist/vehicle the ego-vehicle must avoid are indicated with a pink dashed path and appropriate icon;
additional vehicles and pedestrians are not shown.

9



Overall metrics. Several metrics are typically used in the CV
literature to evaluate a tracker’s performance holistically. In
this paper, we focus on two of them: A-MOTA and MOTP.

The Average Multiple-Object Tracking Accuracy (A-MOTA)
metric combines information about the false positives, and
false negatives:

A-MOTA = 1−
∑
t (FNt + FPt)∑

t GTt
.

The other common overall metric for MOT applications is
the Multiple-Object Tracking Precision (MOTP), given as a
ratio of the distances between ground-truth object positions
and predicted track positions and the number of matches made,
summed over all objects and all frames:

MOTP =

∑
t,i dt,i∑
t ct

.

In this expression, dt,i is the IOU of the bounding boxes of
object i and its predicted track position at frame t, and ct is the
number of detection-track matches found at frame t. For an
ideal tracking system, MOTP = 1.0 (i.e., each detection-track
match has perfect overlap).

B. Perfect Sensing

We now describe the results of tracking both vehicles and
pedestrians in the scenarios listed in Sec. V-A, sampling
from the PMFs in Table II. Each scenario lasted 300 camera
frames. We evaluated the accuracy and precision of tracking,
comparing the results for each PMF with those of PMF H1.
For each scenario, we collected RGB images generated by a
single front-facing camera, ground-truth bounding boxes of all
vehicles and pedestrians that were captured by the camera, and
the ground-truth motion of the camera itself.

The A-MOTA and MOTP for each scenario and PMF are
reported in Table III for vehicle tracking and Table IV for
pedestrian tracking (note that Scenarios 3 and 5 had no
pedestrians). For PMFs 1-4, we repeated the scenario 100
times, and report the average A-MOTA and MOTP results.
Given these data, we can now answer the four questions posed
in Sec. V-B.

Q1: What if the most recent data are sometimes unavail-
able? To explore this question, we compare the results of
PMFs 1 and H1. As PMF 1 has the most recent data available
with probability 0.9, we expect that the accuracy and precision
will be comparable to PMF H1, for which the most recent data
are always available.

Comparing the two columns in Tables III and IV, we
see that PMF 1 has an A-MOTA score within 0.62% and
0.90% of that of PMF H1 across all scenarios for vehicles
and pedestrians, respectively. Similarly, the MOTP score for
PMF 1 is within 2.07% and 1.61% of that of PMF H1 for
vehicles and pedestrians, respectively.

Q2: How much of an impact does the worst-case age
have if the most recent data are usually available? This
question can be answered by comparing PMFs 2 and 3.

For both distributions, the most recent data are available
with probability 0.8. However, PMF 3 represents a bimodal
distribution, which may result if tasks become greatly delayed;
its worst-case age is four frames, which occurs with probability
0.16. For PMF 2, the worst-case data age is only two frames.

For pedestrian tracking, PMF 3 was within at most 1.14% of
PMF 2 in terms of A-MOTA across all scenarios. For vehicle
tracking, this difference dropped to 0.73%. PMF 3 had MOTP
within 4.95% that of PMF 2 across all scenarios and both
target types. These results suggest that although it is better to
have a lower worst-case age, the differences in both accuracy
and precision are not extreme.

Q3: Is it better to have a higher chance of more recent
data, or a lower worst-case age? PMFs 3 and 4 were chosen
to answer this question: PMF 3 has more likely availability
of the most recent results (probability 0.8 rather than 0.5), but
has greater worst-case age (four frames versus three frames).

The results in columns PMF 3 and PMF 4 indicate that
recency of available data is slightly more important than the
worst-case data age. PMF 3 outperformed PMF 4 for A-MOTA
and MOTP in seven out of eight comparisons each. However,
the difference in these scores was only up to 0.84% for
A-MOTA and 1.89% for MOTP. Therefore, although PMF 3
seems to perform slightly better, our experiments have not
demonstrated a clear answer to this question.

Q4: How does the average case differ from the worst case?
For the average and worst cases, we compare PMFs 1-4 to the
corresponding worst-case PMF Hps. We expect the average
case to result in higher A-MOTA and MOTP scores, and for
this difference to become more pronounced as the worst-case
history age increases.

For a worst-case history age of two, we compare PMF 2 to
PMF H2: PMF 2 performed better than PMF H2 in every
comparison. Similarly, for worst-case history age of three
frames, PMF 4 outperformed PMF H3 in every comparison.
As expected, for a worst-case history age of four frames, both
PMF 1 and PMF 3 beat the worst-case PMF H4 in every
comparison, and for most by a large margin.

The history-versus-accuracy trade-off. The experimental
results relating to question Q4 hint at our overall conclusion:
allowing the infrequent use of older results in a MOT applica-
tion has only minimal impact on the application’s accuracy
and precision, while allowing the computation of bounded
response times for use in real-time certification. To explore this
a little further, we make a final comparison against PMF H2,
which always uses the results of two frames prior, and thus
corresponds to tracking using only half of the frames.

PMFs 1-4 are indexed in order of the expected results. That
is, prior to performing experiments, we expected PMF 1 to
perform the best and PMF 4 to perform the worst of this
group. In fact, comparing these four PMFs to PMF H2, we
see that PMF H2 did not perform as well as PMF 1 or PMF 2
in any comparison. Additionally, PMF H2 scored better than
PMF 3 or PMF 4 in only one of the 16 comparisons.

10



Metric PMF 1 PMF 2 PMF 3 PMF 4 PMF H1 PMF H2 PMF H3 PMF H4

Scenario 1 A-MOTA 0.951 0.952 0.947 0.939 0.951 0.927 0.893 0.888
MOTP 0.709 0.700 0.669 0.670 0.724 0.644 0.588 0.567

Scenario 2 A-MOTA 0.966 0.962 0.955 0.951 0.972 0.933 0.943 0.933
MOTP 0.730 0.724 0.699 0.697 0.736 0.669 0.609 0.560

Scenario 3 A-MOTA 0.982 0.980 0.977 0.974 0.985 0.973 0.954 0.931
MOTP 0.721 0.714 0.689 0.686 0.730 0.656 0.628 0.580

Scenario 4 A-MOTA 0.965 0.962 0.957 0.952 0.968 0.939 0.934 0.908
MOTP 0.777 0.772 0.751 0.751 0.784 0.741 0.690 0.650

Scenario 5 A-MOTA 0.978 0.976 0.970 0.968 0.982 0.957 0.942 0.904
MOTP 0.652 0.646 0.614 0.607 0.659 0.575 0.511 0.483

TABLE III: Results for vehicles tracking using ground-truth detections. The best result in each row, as well as any within 1%
of the best, are shown in bold.

Metric PMF 1 PMF 2 PMF 3 PMF 4 PMF H1 PMF H2 PMF H3 PMF H4

Scenario 1 A-MOTA 0.884 0.878 0.868 0.863 0.892 0.847 0.842 0.825
MOTP 0.672 0.663 0.634 0.622 0.683 0.601 0.569 0.541

Scenario 2 A-MOTA 0.968 0.969 0.959 0.962 0.971 0.962 0.956 0.936
MOTP 0.808 0.803 0.785 0.783 0.814 0.767 0.731 0.702

Scenario 4 A-MOTA 0.936 0.934 0.928 0.927 0.938 0.920 0.856 0.840
MOTP 0.794 0.788 0.767 0.767 0.800 0.748 0.736 0.720

TABLE IV: Results for pedestrian tracking using ground-truth detections. (Note that Scenarios 3 and 5 did not include any
pedestrians.) The best result in each row, as well as any within 1% of the best, are shown in bold.

Although results hold for both city- and highway-driving
scenarios, the motion of the ego-vehicle does factor into
the trade-off. Scenarios 1-4 feature city driving (of these,
Scenario 3 involves the highest speed, as it does not involve
the ego-vehicle turning sharply), and Scenario 5 occurs at
highway speeds with only minor direction changes. As shown
in Table III, direction changes were inversely correlated with
A-MOTA scores: Scenarios 3 and 5 had much higher A-MOTA
values for PMFs 1-4 and PMF H1 than the other scenarios. For
MOTP, the speed seemed to be the largest factor: Scenario 5
had much lower MOTP than all other scenarios.

C. Camera-Based Sensing

We have thus far examined the history-versus-accuracy
trade-off in the presence of perfect detections, i.e. using
the ground-truth bounding boxes of pedestrians and vehicles.
However, in real-world scenarios, such ground-truth data are
not available, which necessitates the use of CV-based object-
detection algorithms.

We chose for a detector a state-of-the-art deep-learning
model, Faster R-CNN [44], which has been shown to achieve
a high level of accuracy. We used TensorFlow [1] to train a
Faster R-CNN model with the Inception v2 feature extrac-
tor [26] (that was pre-trained on the COCO dataset [24], [34])
on a small dataset of 1300 images of bicycles, motorbikes,
cars, and pedestrians generated from CARLA [10], [50].

We measured the detection accuracy of our model using
a popular object-detection accuracy metric, the mean aver-

age precision (mAP) [19], [25]. After over 42, 000 training
iterations, our Faster R-CNN model achieved a mAP score
of 92.89%, indicating a high level of detection accuracy; a
perfect object-detection algorithm would have a mAP score
of 100%.

We now examine the impact of imperfect detections on
tracking accuracy and precision. For this second set of ac-
curacy experiments, we replaced the ground-truth vehicle and
pedestrian detections with those generated by the Faster R-
CNN model; the remainder of the experimental setup was
unchanged. The resulting A-MOTA and MOTP values are given
in Tables V and VI.

The impact of imperfect detections. We first compare the
results using ground-truth data (Tables III and IV) with those
from imperfect detections (Tables V and VI). As we would
expect, using a detector decreased the accuracy of vehicle
tracking and the precision of pedestrian tracking. Furthermore,
PMF H1 had the highest MOTP in each scenario for both
vehicles and pedestrians. However, accuracy seems to be
more affected by potentially incorrect detections. For example,
PMF 4 resulted in the highest A-MOTA score for vehicles in
Scenario 1, despite using older data with probability 0.5, and
PMF H4, which corresponds to always using data from four
frames prior) had the highest A-MOTA score for pedestrians
in Scenario 2. Altogether, our results suggest that tracking of
pedestrians is less impacted by imperfect data, whereas for
vehicles the impact can be quite large.

11



Metric PMF 1 PMF 2 PMF 3 PMF 4 PMF H1 PMF H2 PMF H3 PMF H4

Scenario 1 A-MOTA 0.741 0.785 0.810 0.844 0.761 0.727 0.698 0.659
MOTP 0.727 0.721 0.664 0.696 0.728 0.642 0.584 0.561

Scenario 2 A-MOTA 0.833 0.844 0.810 0.815 0.836 0.836 0.837 0.833
MOTP 0.704 0.689 0.673 0.649 0.705 0.631 0.593 0.547

Scenario 3 A-MOTA 0.896 0.874 0.883 0.877 0.904 0.858 0.850 0.836
MOTP 0.601 0.586 0.556 0.573 0.609 0.532 0.506 0.496

Scenario 4 A-MOTA 0.828 0.818 0.793 0.802 0.831 0.817 0.810 0.789
MOTP 0.766 0.757 0.711 0.712 0.766 0.712 0.688 0.656

Scenario 5 A-MOTA 0.968 0.968 0.964 0.964 0.970 0.960 0.961 0.949
MOTP 0.747 0.728 0.703 0.703 0.758 0.659 0.579 0.536

TABLE V: Results for vehicle tracking using Faster R-CNN to detect vehicles. The best result in each row, as well as any
within 1% of the best, are shown in bold.

Metric PMF 1 PMF 2 PMF 3 PMF 4 PMF H1 PMF H2 PMF H3 PMF H4

Scenario 1 A-MOTA 0.882 0.888 0.894 0.873 0.890 0.847 0.834 0.835
MOTP 0.639 0.640 0.600 0.612 0.654 0.622 0.535 0.449

Scenario 2 A-MOTA 0.697 0.688 0.717 0.697 0.703 0.641 0.706 0.723
MOTP 0.729 0.745 0.690 0.734 0.751 0.707 0.681 0.663

Scenario 4 A-MOTA 0.938 0.938 0.934 0.938 0.938 0.938 0.936 0.920
MOTP 0.763 0.745 0.723 0.727 0.769 0.721 0.694 0.663

TABLE VI: Results for pedestrian tracking using Faster R-CNN to detect pedestrians. (Note that no pedestrians were present
in Scenarios 3 and 5.) The best result in each row, as well as any within 1% of the best, are shown in bold.

Q1 through Q4, revisited. For question Q1, we again compare
PMF 1 and PMF H1. The MOTP score for PMF 1 was at
most 2.93% lower than that of PMF H1, indicating that there
is still a precision loss due to having older data. Similarly for
A-MOTA, the score for PMF 1 was at most 2.63% lower than
that of PMF H1.

In comparing PMF 2 and PMF 3, we see that having a
higher worst-case history age (PMF 3) corresponded to much
lower MOTP in all scenarios: MOTP was decreased by up to
7.91% compared to using PMF 2. However, A-MOTA was
much more varied in the presence of a CV-based vehicle
detector. In four of the eight comparisons, PMF 3 resulted
in higher accuracy.

For the comparison for questions Q3, we again see different
trends for precision relative to accuracy. In four of the eight
comparisons, PMF 3 corresponded to lower accuracy than
PMF 4; for MOTP, this number is six out of eight. Combined
with the comparison for question Q2, this suggests that MOT
precision relies on having lower worst-case history age, but
MOT accuracy does not have such a clear dependence.

Finally, we revisit the comparisons related to question
Q4. As with ground-truth detections, PMFs 1 and 3 usually
outperformed PMF H4, both by a large margin; for Scenario 2,
however, this trend was surprisingly reversed. The differences
for the other comparisons were less pronounced with CV-
based detections than ground-truth detections: PMF 4 usually
outperformed PMF H3 in A-MOTA but had much higher
MOTP, and the same trend held for PMF 2 and PMF H2.

The trade-off, revisited. Compared to always having the most
recent data (i.e., PMF H1), the lowest A-MOTA score among
PMFs 1-4 was 4.57% reduced, and the lowest MOTP score
was reduced by 8.79%. This suggests only a minor drop in
accuracy, with a moderate drop in precision, as a result of
using older data. It is also worth restating that the introduction
of a real detector into the MOT pipeline makes these results
less definitive, however: in some scenarios, using older data
actually resulted in higher precision or accuracy.

However, if requiring p = 1 results in a system for which
no response-time bounds can be computed, then measuring
accuracy relative to PMF H1 no longer has any relevance.
Instead, we compare against PMF H2, to compare to a system
in which the history age of two is always used. In this
case, both precision and accuracy are somewhat robust to a
potentially imperfect detector. This is evident when comparing
PMF H2 to PMFs 1-2, which correspond to situations in which
the most recent data are available with probability at least 0.8
and the the worst-case age is two with probability at least
0.99. Aside from a single comparison in which PMF H2 has
slightly higher accuracy, when using our Faster R-CNN model
to detect vehicles and pedestrians, PMFs 1 and 2 had 0.12-
8.74% higher accuracy than that of PMF H2 and 2.73-13.35%
higher tracking precision. These results suggest that for a
system that would otherwise be unschedulable, the increased
worst-case history requirement due to increased parallelism
only slightly reduces MOT accuracy and precision, and that
reduction can be greatly mitigated if the most recent results

12



are usually available.

VII. CASE STUDY

The history-versus-response-time experiments in Sec. III
indicate that increasing Pi past the minimum required to
ensure that Pi > ui can significantly reduce response-time
bounds. However, the experiments in Sec. VI showed that the
impact of increasing Pi depends not only on the absolute value
of Pi, but also the distribution of available historical results.

What remains to be seen is what history distributions can
occur in practice, and how this impacts the accuracy of the
MOT application. We now present the results of a case study
experiment including several automotive applications running
alongside an MOT tracking application, all running as real-
time tasks under global EDF scheduling using LITMUSRT [5],
[8], a research-based modification of the Linux kernel to
enable real-time scheduling.

A. Experimental Setup

We scheduled three additional applications running along-
side the deep-learning-based MOT application discussed in
Sec. VI-C. The first two perform global and local path
planning via Rapidly-exploring Random Trees (RRT) [30] and
the Artificial Potential Field (APF) method [29], and the third
implements lane detection using the Hough Transform.

For this case study, we consider Scenario 2, in which both
vehicles and pedestrians are tracked by a camera attached to
a vehicle moving at city-driving speeds. Thus, we assume the
vehicle travels at around 30 miles per hour, or 44 feet per
second. For the global-planner task, we selected a period of
5 seconds (corresponding to re-planning the global path every
220 feet). The local planner determines the more immediate
path, so we selected for it a period of 200 milliseconds,
corresponding to approximately every 9 feet. We chose a
period of 200 milliseconds for lane detection as well. The
deep-learning-based detector used in our MOT application
takes around 2 seconds to process a single image. Therefore,
we chose a period of 2 seconds for both the pedestrian-
and vehicle-MOT tasks. For all tasks, we assume implicit
deadlines, i.e., that the deadline equals the period.

We performed our case study on a platform with a four-core
3.50 GHz Intel i5-6600K processor and one NVIDIA GeForce
GTX 980 Ti GPU. Each CPU core has a 32-KB L1 instruction
cache, a 32-KB L1 data cache, and a 256-KB L2 cache; all
four CPU cores share a 6-MB L3 cache.

B. Distribution of Available History

To determine the distribution of available history for the
MOT tasks, we set Pi = 4 and performed tracking of both
vehicles and pedestrians for the 300 frames of Scenario 2.
The most recent result was available for 195 of the 300
frames, the second-most recent for 75 frames, and third-most
and fourth-most recent were available for 18 and 12 frames,
respectively. The resulting distribution, represented as a tuple,
is (0.65, 0.25, 0.06, 0.04).

C. History-versus-Accuracy

Given the results discussed in Sec. VI, we assume the
accuracy and precision for this observed history distribution
should be higher than that of PMF 4, as the most-recent
data is available more frequently than half the time. However,
we expect that the observed distribution should not perform
as well as the other PMFs. After running Scenario 2 100
times and sampling from our observed history distribution,
we observed an A-MOTA score of 0.842 and a MOTP score
of 0.654 for vehicle tracking. As expected, both accuracy and
precision were higher than that of PMF 4. In fact, the accuracy
for our observed history distribution was within 1% of the best
(0.844 for PMF 2).

Given the results of this case study, we believe that the
results presented in Sec. VI can be used as general guidance
for real task systems: as long as the most recent historical
results are available most of the time, the accuracy drop is
minimal compared to sequential scheduling.

VIII. CONCLUSION

Prior work by Amert et al. [2] has shown that response-time
bounds can be computed for cyclic real-time processing graphs
if p > 1 is allowed for each cycle with utilization exceeding
1.0. However, p > 1 permits non-immediate back history to
be used, which in the context of CV tracking applications
could potentially compromise tracking accuracy. In this paper,
we have studied this issue in detail. We first showed that
increasing p greatly reduced response-time bounds for syn-
thetically generated graph-based task systems. In the context
of our accuracy study, we found that allowing p > 1 did not
significantly affect accuracy, as long as immediate back history
is frequently available. This is a favorable observation from a
real-time schedulability point of view because it points to the
existence of a certain amount of leeway in graph scheduling
that can be reasonably exploited. It is worth noting that,
while approaches that lessen CV accuracy should be generally
eschewed, accuracy loss is mainly being contemplated here to
ensure the schedulability of a graph that would otherwise be
unschedulable.

In our accuracy study, accuracy was assessed using well-
established metrics pertaining to CV algorithms. In future
work, we intend to fully integrate the usage of relaxed
back-history requirements within the control and decision-
making components of CARLA, and to re-assess the impact
of relaxing such requirements in actual driving scenarios via
higher-level metrics such as the number of accidents or traffic
violations. CARLA is a complex system, so this integration
will be a major undertaking.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A system for large-scale
machine learning,” in Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation, 2016, pp. 265–283.

13



[2] T. Amert, S. Voronov, and J. H. Anderson, “OpenVX and real-time
certification: The troublesome history,” in Proceedings of the 40th IEEE
Real-Time Systems Symposium, 2019, pp. 312–325.

[3] P. Bergmann, T. Meinhardt, and L. Leal-Taixe, “Tracking without bells
and whistles,” arXiv preprint arXiv:1903.05625, 2019.

[4] M. Bleyer, C. Rhemann, and C. Rother, “Patchmatch stereo-stereo
matching with slanted support windows,” in Proceedings of the British
Machine Vision Conference, vol. 11, 2011, pp. 1–11.

[5] B. B. Brandenburg, “Scheduling and locking in multiprocessor real-time
operating systems,” Ph.D. dissertation, University of North Carolina at
Chapel Hill, Chapel Hill, NC, USA, 2011.

[6] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and
L. Van Gool, “Robust tracking-by-detection using a detector confidence
particle filter,” in Proceedings of the 12th IEEE International Conference
on Computer Vision, 2009, pp. 1515–1522.

[7] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on Robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[8] J. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H. Anderson,
“LITMUSRT : A testbed for empirically comparing real-time multipro-
cessor schedulers,” in Proceedings of the 27th IEEE International Real-
Time Systems Symposium, 2006, pp. 111–126.

[9] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2005, pp. 886–893 Vol. 1.

[10] DanielHfnr, “Carla object detection dataset,” https://github.com/
DanielHfnr/Carla-Object-Detection-Dataset, 2019 (accessed 10 Septem-
ber 2020).

[11] U. Devi and J. H. Anderson, “Tardiness bounds under global EDF
scheduling on a multiprocessor,” Real-Time Systems, vol. 38, no. 2, pp.
133–189, 2008.

[12] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the 1st
Annual Conference on Robot Learning, 2017, pp. 1–16.

[13] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from
a single image using a multi-scale deep network,” in Proceedings of
Advances in Neural Information Processing Systems, 2014, pp. 2366–
2374.

[14] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale direct
monocular SLAM,” in Proceedings of the European Conference on
Computer Vision, 2014, pp. 834–849.

[15] Epic Games, “Unreal Engine,” https://www.unrealengine.com, 2020 (ac-
cessed 10 September 2020).

[16] P. Erdős and A. Rényi, “On random graphs i,” Publicationes Mathemat-
icae, vol. 6, pp. 290–297, 1958.

[17] J. P. Erickson and J. H. Anderson, “Response time bounds for G-EDF
without intra-task precedence constraints,” in Proceedings of the 15th
International Conference On Principles Of Distributed Systems, 2011,
pp. 128–142.

[18] J. P. Erickson, N. Guan, and S. Baruah, “Tardiness bounds for global
EDF with deadlines different from periods,” in Proceedings of the 14th
International Conference On Principles Of Distributed Systems, 2010,
pp. 286–301.

[19] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-
man, “The Pascal visual object classes (VOC) challenge,” International
Journal of Computer Vision, vol. 88, no. 2, pp. 303–338, 2010.

[20] J.-M. Frahm, P. Fite-Georgel, D. Gallup, T. Johnson, R. Raguram, C. Wu,
Y.-H. Jen, E. Dunn, B. Clipp, S. Lazebnik, and M. Pollefeys, “Building
Rome on a cloudless day,” in Proceedings of the European Conference
on Computer Vision, 2010, pp. 368–381.

[21] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580–587.

[22] J. Heinly, J. L. Schönberger, E. Dunn, and J.-M. Frahm, “Reconstructing
the World* in Six Days *(As Captured by the Yahoo 100 Million Image
Dataset),” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 3287–3295.

[23] H. Hirschmuller, “Stereo processing by semiglobal matching and mu-
tual information,” IEEE Transactions on pattern analysis and machine
intelligence, vol. 30, no. 2, pp. 328–341, 2008.

[24] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama et al., “Speed/accuracy trade-offs

for modern convolutional object detectors,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 7310–
7311.

[25] J. Hui, “mAP (mean Average Precision) for object detection,”
https://medium.com/@jonathan hui/map-mean-average-precision-for-
object-detection-45c121a31173, 2018 (accessed 10 September 2020).

[26] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[27] M. Isard and A. Blake, “Condensation—conditional density propagation
for visual tracking,” International journal of computer vision, vol. 29,
no. 1, pp. 5–28, 1998.

[28] H. Kataoka, K. Tamura, K. Iwata, Y. Satoh, Y. Matsui, and Y. Aoki,
“Extended feature descriptor and vehicle motion model with tracking-
by-detection for pedestrian active safety,” IEICE TRANSACTIONS on
Information and Systems, vol. 97, no. 2, pp. 296–304, 2014.

[29] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Autonomous robot vehicles. Springer, 1986, pp. 396–404.

[30] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,”
The international journal of robotics research, vol. 20, no. 5, pp. 378–
400, 2001.

[31] H. Leontyev and J. H. Anderson, “Generalized tardiness bounds for
global multiprocessor scheduling,” in Proceedings of the 28th IEEE
Real-Time Systems Symposium, 2007, pp. 413–422.

[32] ——, “Tardiness bounds for FIFO scheduling on multiprocessors,” in
Proceedings of the 19th Euromicro Conference on Real-Time Systems,
2007, pp. 71–80.

[33] Z. Li and N. Snavely, “MegaDepth: Learning single-view depth predic-
tion from internet photos,” arXiv preprint arXiv:1804.00607, 2018.

[34] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick,
J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft
COCO: Common objects in context,” CoRR, vol. abs/1405.0312, 2014.
[Online]. Available: http://arxiv.org/abs/1405.0312

[35] C. Liu and J. H. Anderson, “Supporting graph-based real-time applica-
tions in distributed systems,” in Proceedings of the 20th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications, 2011, pp. 143–152.

[36] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler, “MOT16: A
benchmark for multi-object tracking,” arXiv preprint arXiv:1603.00831,
2016.

[37] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: A
versatile and accurate monocular slam system,” IEEE Transactions on
Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[38] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An open-source slam
system for monocular, stereo, and RGB-D cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[39] S. Murray, “Real-time multiple object tracking-a study on the importance
of speed,” arXiv preprint arXiv:1709.03572, 2017.

[40] W. G. Najm, J. D. Smith, and M. Yanagisawa, “Pre-crash scenario
typology for crash avoidance research,” United States. National Highway
Traffic Safety Administration, Tech. Rep., 2007.

[41] K. Okuma, A. Taleghani, N. De Freitas, J. J. Little, and D. G. Lowe, “A
boosted particle filter: Multitarget detection and tracking,” in European
conference on computer vision. Springer, 2004, pp. 28–39.

[42] F. Porikli and O. Tuzel, “Object tracking in low-frame-rate video,” in
Image and Video Communications and Processing 2005, vol. 5685.
International Society for Optics and Photonics, 2005, pp. 72–79.

[43] T. Price, J. L. Schönberger, Z. Wei, M. Pollefeys, and J.-M. Frahm,
“Augmenting crowd-sourced 3D reconstructions using semantic detec-
tions,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 1926–1935.

[44] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Advances in
neural information processing systems, 2015, pp. 91–99.

[45] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese,
“Generalized intersection over union: A metric and a loss for bounding
box regression,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 658–666.

[46] D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl, N. Nešić,
X. Wang, and P. Westling, “High-resolution stereo datasets with
subpixel-accurate ground truth,” in Proceedings of the German Con-
ference on Pattern Recognition, 2014, pp. 31–42.

14



[47] J. L. Schönberger and J.-M. Frahm, “Structure-from-motion revisited,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 4104–4113.

[48] R. Schubert, E. Richter, and G. Wanielik, “Comparison and evaluation
of advanced motion models for vehicle tracking,” in Proceedings of the
11th IEEE International Conference on Information Fusion, 2008, pp.
1–6.

[49] R. Stiefelhagen, K. Bernardin, R. Bowers, J. Garofolo, D. Mostefa, and
P. Soundararajan, “The CLEAR 2006 evaluation,” in Proceedings of
the 1st International Evaluation Workshop on Classification of Events,
Activities and Relationships, 2006, pp. 1–44.

[50] tkortz, “Carla object detection dataset,” https://github.com/tkortz/Carla-
Object-Detection-Dataset, 2020 (accessed 10 September 2020).

[51] B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg, A. Dosovitskiy, and
T. Brox, “DeMoN: Depth and motion network for learning monocular
stereo,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 5038–5047.

[52] K. Yang, G. A. Elliott, and J. H. Anderson, “Analysis for supporting
real-time computer vision workloads using OpenVX on multicore+GPU
platforms,” in Proceedings of the 23rd International Conference on Real-
Time Networks and Systems, 2015, pp. 77–86.

[53] M. Yang, T. Amert, K. Yang, N. Otterness, J. H. Anderson, F. D. Smith,
and S. Wang, “Making OpenVX really ‘Real Time’,” in Proceedings of
the 39th IEEE Real-Time Systems Symposium, 2018, pp. 80–93.

[54] J. Zbontar and Y. LeCun, “Stereo matching by training a convolutional
neural network to compare image patches,” Journal of Machine Learning
Research, vol. 17, no. 1-32, p. 2, 2016.

[55] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised
learning of depth and ego-motion from video,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 6612–6619.

15


