
Challenges in Real-Time GPU Management∗

Tanya Amert
The University of North Carolina at Chapel Hill

tamert@cs.unc.edu

ABSTRACT
Existing work on response-time analysis for real-time task
systems represented as processing graphs containing cycles
does not properly handle GPU-using tasks when intra-task
parallelism is restricted. For such graphs to be schedula-
ble, the execution of GPU-using tasks within the cycles may
need to be prioritized over that of other tasks. This pa-
per presents possible approaches for managing tasks using
NVIDIA GPUs while allowing some tasks to be prioritized
over others, and explores the tradeoff that results between
response times of various tasks.

Keywords
GPUs, CUDA, real-time GPU management

1. INTRODUCTION
Advanced driver assist systems are enabled by a range

of computer vision (CV) applications. These applications
typically rely on cameras as an input modality. Processing
of camera feeds for CV applications is greatly accelerated
by graphics processing units (GPUs). Such safety-critical
systems must be certified, so response-time bounds for CV
applications executed on GPUs are a necessity.

However, bounding response times of tasks executed on a
GPU is extremely challenging. NVIDIA’s Drive-PX2 series
of GPU-equipped embedded platforms are specifically de-
signed for automotive applications, yet necessary scheduling
details of NVIDIA GPUs are not available without a restric-
tive non-disclosure agreement, and their drivers are typically
closed source. As a result, existing response-time bounds for
such GPUs are not tight, and modifications to the internal
scheduling policies are difficult to make. Although AMD
provides open-source drivers for its GPUs, AMD is not as
widely adopted by automotive companies.

Contributions. In this paper, we explore approaches to
real-time GPU management that enable tighter response-
time bounds for GPU-using tasks while allowing for priori-
tizing of some GPU-using tasks over others.

Organization. This paper is organized as follows. We
provide an overview of NVIDIA GPU software and hardware
in Sec. 2 and discuss related work in Sec. 3. We then explore
various approaches to managing GPU execution in Sec. 4,
and conclude in Sec. 5.

∗Work supported by NSF grants CNS 1409175, CNS
1563845, CNS 1717589, and CPS 1837337, ARO grant
W911NF-17-1-0294, and funding from General Motors.

Listing 1 Vector Addition Pseudocode.

1: kernel vecAdd(A ptr to int, B: ptr to int, C: ptr to int)
// Calculate index using built-in thread, block info

2: i := blockDim.x * blockIdx.x + threadIdx.x
3: C[i] := A[i] + B[i]
4: end kernel

5: procedure main
// (i) Allocate GPU memory for arrays A, B, and C

6: cudaMalloc(d A)
7: . . .

// (ii) Copy arrays A and B from CPU to GPU memory
8: cudaMemcpy(d A, h A)
9: . . .

// (iii) Launch the kernel
10: vecAdd<<<numBlocks, threadsPerBlock>>>(

d A, d B, d C)
// (iv) Copy results from GPU to CPU array C

11: cudaMemcpy(h C, d C)
// (v) Free GPU memory for arrays A, B, and C

12: cudaFree(d A)
13: . . .

14: end procedure

2. BACKGROUND
In this section, we provide an overview of the basics of

NVIDIA GPUs.

2.1 CUDA
CUDA is a C/C++ extension developed by NVIDIA to

allow programmers to submit instructions to the GPU [8].
The CUDA API includes commands to copy data between
the host CPU and the device GPU, as well as between mul-
tiple GPU devices, and to submit programs called kernels
for execution on the GPU.

The general structure of a CUDA program is illustrated in
Listing 1. This includes (i) allocating memory on the GPU,
(ii) copying data to the GPU, (iii) executing one or more
kernels on the GPU, (iv) copying the results back from the
GPU, and (v) freeing any allocated memory on the GPU.

Kernel execution is divided into groups of 32 threads, called
warps. Each thread in a warp executes in a SIMD fashion,
using built-in CUDA variables to determine the data for that
thread (Line 2). Warps are combined into blocks, which are
further grouped into grids. As shown in Line 10, the com-
mand to issue a kernel requires the programmer to specify
the layout of threads into grids and blocks (numBlocks and
threadsPerBlock, respectively).

Each CUDA commands is issued to a stream, which is a
FIFO queue of operations. By default, all CUDA commands
are issued to the default stream, called the NULL stream.



Memory Controller

DRAM1

Bank 0

DRAM

Bank 1 …
DRAM

Bank n

DRAM

Bank 2

DRAM

Bank n-1

A57 CPU 0

…
L1-I

48KB

L1-D

32KB

A57 CPU 3

L1-I

48KB

L1-D

32KB

A57 CPU shared L2 cache

2 MB

GPU L2 cache

512 KB

Pascal GPU

SM 0 SM 1

128 cores 128 cores

Denver CPU 0

L1-I

128KB

L1-D

64KB

Denver CPU 1

L1-I

128KB

L1-D

64KB

Denver CPU shared L2 cache

2 MB

Copy Engine

1DRAM bank count and size depend on device package

(a) NVIDIA TX2

Host Machine

GPU L2 cache

4608 KB

Discrete Volta GPU

Titan V

SM 0

64 cores

SM 79

64 cores
...

Copy Engine 0 Copy Engine 6

…DRAM1

Bank 0

DRAM

Bank 

nCPU

…
DRAM1

Bank 0

DRAM

Bank 

nGPU

DRAM

Bank 1

PCI-E Bus

...

(b) NVIDIA Titan V

Figure 1: Comparison of two GPUs: (a) NVIDIA
TX2 (integrated) and (b) Titan V (discrete).

Use of the NULL stream greatly reduces parallelism, and
user-defined streams can be used to allow operations to ex-
ecute in parallel, and thus better utilize powerful GPUs.

2.2 NVIDIA GPU Hardware
NVIDIA GPUs contain multiple copy engines (CEs), used

to copy data to and from the GPU, and an execution en-
gine (EE), comprised of multiple streaming multiprocessors
(SMs). An SM can service up to 2048 threads at once. In-
tegrated GPUs typically have an order of magnitude fewer
SMs than discrete GPUs.

Example 1. Details of two NVIDIA GPUs are depicted
in Fig. 1. NVIDIA’s TX2 system-on-chip (inset (a)) has a
GPU comprised of one CE and two SMs. In contrast, the
discrete Titan V (inset (b)) boasts seven CEs and 80 SMs.

An SM is comprised of a number of hardware cores, ser-
viced by a small number of warp schedulers. A warp sched-
uler hides memory latency by determining which of four
warps should execute an instruction at a given time instant.
For the rest of this paper, we consider scheduling at the
thread and block level, and ignore warps, as their details
are much more difficult to measure at runtime.

3. RELATED WORK
In this section, we discuss three groups of related work.

In doing so, we consider the following different dimensions
of GPU execution: whether the GPU is treated as a unipro-
cessor or multiprocessor device, if the approach uses locking
protocols to synchronize GPU access or considers scheduling
techniques, whether the GPU is accessed by one or multiple
processes, and if one or multiple GPUs are available in a sys-
tem. We consider related work first based on the choice of
scheduling or synchronization as a management technique,
and discuss the remaining dimensions later.

Scheduling. The NVIDIA documentation omits important
details regarding GPU scheduling policies. To this end, Ot-
terness et al. explored the behavior of kernels submitted
from different processes (thus executed via timeslices) [9].
Amert et al. extended this exploration to GPU access from
within a single process [1]; they described a set of rules dic-
tating the order in which GPU operations (kernel executes
or copy operations) execute on their respective GPU engines,
and provided microbenchmark experiments to validate this
behavior. They additionally studied the behavior when both
user-defined streams and the NULL stream are used, as well
as two different stream priority levels. Recently, Yang et
al. extended this work to provide response-time bounds for
GPU-using CV applications expressed as DAGs [10].

Capodieci et al. demonstrated a real-time scheduler for
GPU operations [3]. They implemented a software scheduler
module within the NVIDIA hypervisor’s runlist manager,
enabling preemptive earliest-deadline first (EDF) scheduling
on the Drive-PX2. However, their approach requires the
open-source drivers available only for NVIDIA’s Drive-PX2
embedded platform, and some details and their source code
were not made available due to non-disclosure agreements.

Synchronization. Access to the GPU can alternatively be
arbitrated by a locking protocol. This approach was taken
in developing GPUSync [4], a real-time GPU management
framework. GPUSync utilizes k-exclusion locks to allow mu-
tually exclusive access to a number of GPUs in a system. Im-
plemented in the kernel, GPUSync is available as a fork [5]
of the LITMUSRT kernel [6].

Remaining dimensions. Of the described related work,
both GPUSync and Capodieci et al. treat the GPU as a
uniprocessor. For less-powerful embedded GPUs, this is a
reasonable assumption. However, computations performed
on a powerful GPU such as the Titan V might not require
all of the GPU’s many SMs, resulting in wasted GPU ca-
pacity. In that case, the multiprocessor-scheduling-based
approaches of [1, 9, 10] might be more appropriate.

Simultaneous GPU access from different processes can
greatly impact response times [9]. For discrete GPUs, the
NVIDIA Multi-Process Service (MPS) allows the scheduling
rules detailed in [1] to apply even when different processes
access the GPU; without MPS, kernels submitted from dif-
ferent processes execute in timeslices based on the runlist,
and thus do not truly execute concurrently on the GPU.

The above related work can also be applied for systems
with multiple GPUs. The CUDA API allows the program-
mer to specify to which GPU an operation is submitted. The
EDF approach from [3] applies if tasks are partitioned to the
different GPUs, and GPUSync directly allows for multiple
GPUs via its k-exclusion locking protocol to manage access.



1 4

2

5 6

3

Regular edge Delay edge

CPU node𝜏𝑣 GPU node𝜏𝑣

𝑝 = 1

𝑝 = 2

Figure 2: A sporadic task graph with CPU and GPU
nodes and one cycle.

4. REAL-TIME GPU MANAGEMENT
In this section, we formalize our problem and present po-

tential approaches to real-time GPU management that pri-
oritize tasks within cycles.

4.1 Motivation
Processing graphs can be used to represent CV applica-

tions. Nodes represent tasks that perform some computa-
tion, and edges correspond to the data dependencies be-
tween tasks. Delay edges indicate that the data involves
results from a prior time step (in CV applications, a time
step typically corresponds to a video frame used as inupt).
Corresponding to each delay edge is a value p indicating the
age of the historical data dependency.

Example 2. An example graph is depicted in Fig. 2. The
edges from τ1 to τ2 indicate that a job of τ2 uses the outputs
of the jobs of τ1 from the current and previous time steps.

Cycles induced by the presence of delay edges can wreak
havoc on existing real-time analysis. If some delay edge in
a cycle has p = 1, then some task in that cycle depends on
the output of the prior frame; as a result, no two jobs of any
task in that cycle can possibly execute in parallel.

Example 2. (cont’d) In Fig. 2, the delay edge from τ6 to
τ4 results in a cycle. As p = 2 for that edge, no more than
two jobs of any task in {τ4, τ5, τ6} can execute in parallel.

The implicit-deadline sporadic task model is given as τi =
(Φi, Ti, Ci), where Φi, Ti, and Ci represent the task’s phase
offset, period, and worst-case execution time, respectively.
The utilization of task τi is defined as ui = Ci/Ti.

Assume multiple jobs of a task may execute concurrently.
If the utilization of a cycle is greater than 1.0, then jobs of
tasks in that cycle cannot be scheduled sequentially without
incurring unbounded response times; if ucycle is the utiliza-
tion of a cycle in the graph, then at least ducyclee jobs of
each task in the cycle must be allowed to execute simultane-
ously. However, the data dependency introduced by a cycle
requires that no more than p jobs of a given task may execute
at once. Thus, tasks have restricted intra-task parallelism.

In an upcoming paper, Amert et al. [2] propose a new rp-
sporadic task model and provide the corresponding analysis
for sporadic task graphs containing cycles with utilization
greater than 1.0. The rp-sporadic task model encodes the
necessary intra-task parallelism as an additional task pa-
rameter: τi = (Φi, Ti, Ci, Pi). In this model, Pi is the
maximum possible intra-task parallelism for the task.

1 456

2

3

𝑃1 = 𝑚
𝑃2 = 𝑚

𝑃3 = 𝑚

𝑃456 = 2

Figure 3: The sporadic task DAG corresponding to
the graph in Fig. 2.

4.2 Proposed Approaches
The analysis presented in [2] reveals a circularity: to de-

termine the response-time bound for CPU tasks, it is neces-
sary to know the response-times of the GPU tasks, and vice
versa. The GPU response-time analysis in [10] assumes full
intra-task parallelism (Pi =∞) for GPU tasks, so it does not
apply to the rp-sporadic task model. Instead, Amert et al.
break this circularity by assuming that access to the GPU
is arbitrated with a simple FIFO mutex lock, and thus treat
GPU blocking time as CPU execution time. They also com-
bine cycles into supernodes; the resulting DAG correspond-
ing to the graph from Fig. 2 is shown in Fig. 3. However,
the response-time bounds derived in [2] are conservative for
powerful GPUs such as the Titan V.

We now explore real-time GPU management approaches
that enable more precise accounting of response times of
GPU tasks under the rp-sporadic task model, and aim specif-
ically to minimize the response times for GPU nodes that
are part of cycles. We first assume each approach is taken
individually; later we remove this assumption.

As in the graph in Fig. 2, we assume that each task exe-
cutes on either the CPU or the GPU. For our purposes, we
consider only the GPU tasks, which we divide into two sets:
H and L, corresponding to nodes that are (high priority)
and are not (low priority) part of a cycle, respectively.

Example 2. (cont’d) In Fig. 2, H = {τ5} and L = {τ3}.

Multiple GPUs. In a system with many GPUs, each cycle
can be assigned to its own GPU. If GPUs are not so abun-
dant, a subset of the GPUs can be designated for use only by
tasks in H, with access arbitrated by a k-exclusion locking
protocol, as in GPUSync [4]. If some task in H may access
more than one GPU simultaneously, a locking protocol for
replicated resources [7] can instead be used to manage ac-
cess. This might be the case if multiple GPU operations are
issued by a single task.

Multi-Process Service. In addition to allowing different
processes’ kernels to execute according to the rules in [1],
MPS allows the programmer to specify a fraction of the GPU
available to a given process.1 Thus, MPS can be used to
divide a GPU into two or more “virtual GPUs” (vGPUs);
the scheduling rules of [1] apply to each vGPU.

Example 3. An example execution pattern is shown in
Fig. 4. In this experiment, two processes each submitted a
single kernel to a Titan V. Under MPS, each process was
specified to utilize 40% of the GPU, i.e. 32 of the 80 to-
tal SMs. Each process submitted a kernel comprised of 160
1MPS can only be used on discrete GPUs, and thus is not
available for integrated GPUs, such as on NVIDIA’s TX2 or
Drive-PX2.



Figure 4: Two processes, each using 40% of the GPU
(all of the Titan V’s 80 SMs shown).

blocks of 1024 threads each (exactly enough to utilize the
entire GPU). Both kernels were able to run immediately us-
ing their 40% share, and both took three times as long to
complete compared to their runtime in isolation. (Without
MPS, one kernel would utilize the entire GPU, and the sec-
ond would start upon completion of blocks of the first.)

As demonstrated in Ex. 3, there is a tradeoff between the
response time of a task and the fraction of the GPU it can
utilize. One vGPU could service all tasks in L, while the rest
service tasks in H. Alternatively, multiple processes could
be configured with different GPU fractions, acting as servers
of different execution power available to tasks in H.

Stream priorities. One of the scheduling extensions ex-
plored in [1] is stream priorities. On existing NVIDIA GPUs,
there are two priority levels for user-defined streams: priority-
low (the default) and priority-high. As described by Amert
et al., the EE uses one scheduling queue per priority level.
Rule A2 from [1] states that if a kernel is present at the head
of the priority-high EE queue, then blocks from that kernel
may execute on the EE. Otherwise, blocks of the kernel at
the head of the priority-low EE queue, if any, may execute.

Example 4. Fig. 5 depicts an experiment showing the
starvation of a kernel submitted to a priority-low stream
(Fig. 6 in [1], reproduced on a Titan V with only the first
8 SMs depicted for clarity). All 640 blocks of each of ker-
nels K2 and K3 complete execution before the last 160 blocks
of K1 execute. The execution of K3 is only delayed by the
execution of K2, another kernel in a priority-high stream.

Tasks in H could submit kernels only to priority-high
streams, and tasks in L could submit kernels only to priority-
low streams. Therefore, tasks in H would be delayed only
by other tasks in H plus at most the longest block duration
of any kernel submitted by a task in L.

4.3 Combining Approaches
The approaches mentioned above can be combined. For

example, in a system with multiple GPUs, allowing only
tasks from a single cycle to execute on a GPU reduces block-
ing of those tasks, but might greatly underutilize the GPU.
Instead, the prioritized stream approach could be used to
allow tasks in L with short block durations to better uti-
lize the GPU with only minimal delay for the tasks in H
assigned to that GPU. Similarly, MPS and stream priori-
ties could be combined to enable tasks in both H and L to
execute on the same vGPU. The delay to tasks in H intro-
duced by lower-priority jobs when using prioritized streams

Figure 5: Kernels in priority-high streams can starve
kernels in priority-low streams (truncated to show
only the first 8 SMs).

suggests a design tradeoff between block duration and the
number of blocks needed to complete computations.

5. CONCLUSION
In this paper, we presented multiple potential approaches

for real-time GPU management, with a focus on prioritizing
the operations of some GPU-using tasks over others. These
techniques can enable tighter response-time bounds for GPU
workloads. A deeper exploration of each approach, as well
as combinations, is necessary in the future, with a case study
of real automotive applications.

6. REFERENCES
[1] T. Amert, N. Otterness, M. Yang, J. Anderson, and

F. D. Smith, “GPU scheduling on the NVIDIA TX2:
Hidden details revealed,” in RTSS ’17.

[2] T. Amert, S. Voronov, and J. Anderson, “OpenVX and
real-time certification: the troublesome history,” in
RTSS ’19, to appear.

[3] N. Capodieci, R. Cavicchioli, M. Bertogna, and
A. Paramakuru, “Deadline-based scheduling for GPU
with preemption support,” in RTSS ’18.

[4] G. A. Elliott, “Real-time scheduling of GPUs, with
applications in advanced automotive systems,” Ph.D.
dissertation, University of North Carolina at Chapel
Hill, 2015.

[5] GPUSync Project,
https://www.github.com/GElliott/litmus-rt-gpusync/.

[6] LITMUSRT Project, https://www.litmus-rt.org/.

[7] C. Nemitz, K. Yang, M. Yang, P. Ekberg, and
J. Anderson, “Multiprocessor real-time locking
protocols for replicated reources,” in ECRTS ’16.

[8] NVIDIA, “CUDA toolkit documentation v10.1.243,”
Online at http://docs.nvidia.com/cuda/, 2019.

[9] N. Otterness, M. Yang, S. Rust, E. Park, J. Anderson,
F. Smith, A. Berg, and S. Wang, “An evaluation of the
NVIDIA TX1 for supporting real-time computer-vision
workloads,” in RTAS ’17.

[10] M. Yang, T. Amert, K. Yang, N. Otterness, J. H.
Anderson, F. D. Smith, and S. Wang, “Making
OpenVX really ‘real time’,” in RTSS ’18.


