
Timing-Predictable Vision Processing
for Autonomous Systems

Tanya Amert∗, Michael Balszun†, Martin Geier†, F. Donelson Smith∗, James H. Anderson∗, Samarjit Chakraborty∗
∗University of North Carolina at Chapel Hill, USA, †Technical University of Munich, Germany

Email: {tamert, smithfd, anderson, samarjit}@cs.unc.edu, {michael.balszun, mgeier}@tum.de

Abstract—Vision processing for autonomous systems today
involves implementing machine learning algorithms and vision
processing libraries on embedded platforms consisting of CPUs,
GPUs and FPGAs. Because many of these use closed-source
proprietary components, it is very difficult to perform any timing
analysis on them. Even measuring or tracing their timing behavior
is challenging, although it is the first step towards reasoning
about the impact of different algorithmic and implementation
choices on the end-to-end timing of the vision processing pipeline.
In this paper we discuss some recent progress in developing
tracing, measurement and analysis infrastructure for determining
the timing behavior of vision processing pipelines implemented on
state-of-the-art FPGA and GPU platforms.

I. INTRODUCTION

Modern autonomous systems – be autonomous vehicles or
robots – consist of two major components: (a) a decision
making unit, which is often made up of one or more feedback
control loops, and (b) a perception unit that feeds the environ-
mental state to the control unit and is made up of camera, radar
and lidar sensors and their associated processing algorithms
and infrastructure. The overall behavior and correctness of the
system relies on the correct functioning of both these com-
ponents. The notion of correctness is also interpreted as both
functional as well as timing correctness. Both functional as well
as timing verification of the decision making (or the control)
unit has a rich literature. However, there is much less work
on how to verify the functional and timing correctness of the
perception unit. There are several reasons that can be attributed
to this. First, progress in the domain of autonomous systems is
fairly recent. Hence, it is only now that there is a major push
towards their verification, which is a major prerequisite – and
currently a major obstacle – for wide scale deployment. Second,
it is only recently that architectures for vision processing
algorithms have also become more complex, with accelerators
like GPUs and TPUs being used in combination with multicore
processors. Finally, the complexity of the algorithms for vision
processing – with the use of machine learning techniques –
have also increased only recently. These developments in both
algorithmic and architectural complexity for vision processing
have made both functional and timing verification extremely
complex, and also all the more necessary.

In this paper we focus only on timing analysis for vision
processing algorithms implemented on multicore + accelerator
platforms. In particular, we outline our work on measurement
and tracing for timing properties on FPGA- and GPU-based
accelerators, broadly outline the underlying techniques and list
some of the major open issues.

C
am

er
a

Processing Node

D
ec

o
d

in
g

P
re

p
ro

ce
ss

in
g

C
o

n
tr

o
l L

o
gi

c

Se
m

an
ti

c 
A

n
al

ys
is

O
b

je
ct

 
Lo

ca
liz

at
io

n

C
la

ss
if

ic
at

io
n

ASIC, FPGA GPU, FPGA, TPU CPU

Frame 
Capture

Encoding

H
ig

h
-B

an
d

w
id

th
 L

in
k

Actuator
Actuator

Actuator

Lo
w

-B
an

d
w

id
th

 L
in

k

Environment/
Plant

Fig. 1: Physical Plant with Sensors/Actuators (top) and Pro-
cessing (bottom)

A. Real-time Image Processing Pipelines

Visual data serves two main purposes in autonomous sys-
tems: First, creating a semantic understanding of the world
that the system is interacting with. This provides the basis
for planning- and decision-making algorithms, and includes
tasks like analyzing obstacles, recognizing street signs (to
determine speed limits or analyzing surface conditions in order
to adapt trajectories or movement speed), and, of course,
identifying objects to be manipulated. Second, video data
serves as real-time sensor input to many control algorithms
while navigating through and interacting with the environment
– to, e.g., determine the system’s position and movement
relative to its designated path. Of course, those categories may
overlap, e.g., when an autonomous car needs to identify a
child running towards the street in time to initiate a braking
maneuver. Especially for the second class of applications, the
timing behavior of each step in the processing and control
pipeline must be well understood and be predictable in order
to determine the worst-case end-to-end delay of the pipeline
from the sensor acquisition to the corresponding actuator update
– usually called the worst-case response time (WCRT) – and
ultimately guarantee timely reactions to occurring events and
stability of the system dynamics.

Fig. 1 gives an overview over the different stages found in a
typical vision-based control loop (see [1] for more details). The
physical world is captured by a camera, which creates a digital
representation of the video frames according to one of different
possible encoding and maybe compression schemes. This data
is then transmitted via a communication link (either dedicated

samarjit
Typewritten Text
To appear in Design, Automation and Test in Europe (DATE), 2021



or via a shared bus system) to the processing nodes. There,
the data needs to be decoded, reassembled and preprocessed.
While those operations are relatively cheap when compared
to the common Deep Neural Networks (DNNs) used in the
next steps, just receiving and decoding a full HD video stream
sent, e.g., over automotive Ethernet can be a significant burden
for a typical embedded Central Processing Unit (CPU) and
is ideally already offloaded to specialized hardware (e.g., to
fixed-function circuitry or FPGAs). The next step is to detect,
localize and classify objects and markers that are relevant
for the control- and higher-level decision making algorithms.
This is the predominant domain of DNNs, which may require
billions of operations to analyze a single frame. Again, this
needs to be offloaded to hardware that is more optimized for
this kind of task than general purpose CPUs, in particular
GPUs or dedicated accelerators for neural networks like Tensor
Processing Units (TPUs). Once the semantic information is
extracted from the video stream, the information can then be
used by the decision logic and control algorithms to compute
the optimal actuator settings to drive the autonomous system
towards its desired state. This information is then sent to the
actuators (potentially over another network) that finally apply
the updated force, valve positions, voltage levels and so on.

B. Fundamentals of Field Programmable Gate Arrays (FPGAs)

FPGAs are a particular kind of re-programmable hardware,
whose functionality is not fixed at chip production time, but can
be configured by the system developer and even changed later
when in the hands of the end customer. They mainly consist of a
large array of programmable logic blocks that usually comprise
SRAM-based Lookup Tables (LUTs), and are connected via an
equally configurable signal interconnect. Together with memory
and I/O elements, this allows the implementation of almost any
digital functionality an Application-specific Integrated Circuit
(ASIC) could be used for, but at a much lower cost compared
to the development and production of a new chip, and with the
ability to later change the functionality without developing a
new chip and replacing components already in the field (e.g.,
in order to support a new compression algorithm). Separate
FPGAs are most commonly used in prototyping stages, or in
products where developing and using a specialized chip is too
expensive or not flexible enough, but a software-based solution
is too slow or inefficient. Additionally, chip vendors like Xilinx
offer heterogeneous solutions that pair classic CPU cores with
an FPGA fabric. While the FPGA part can be used as classic
accelerator similar to GPUs, it can also be used to process
incoming and outgoing data streams on the fly and, e.g., also
handle low-level details of communication protocols without
interrupting the software on the CPUs [2].

Contrary to GPUs, FPGAs and their accompanying develop-
ment tools can offer excellent, cycle-accurate insights into the
behavior of a given design entity, although the level of detail
varies with the abstraction of the used Hardware Description
Language (HDL) and/or simulation model. On the system level
of purely FPGA-based systems, there, usually, is no dynamic
scheduling involved that would affect the execution times in an
unpredictable manner. The challenge for timing analysis resides

more in predicting and balancing chip area against latency of
a particular logic function’s implementation (see Sec. II-B) at
design time. For heterogeneous devices with a CPU subsystem,
however, each shared resource like memory or bus interconnect
complicates the timing analysis, as access latencies no longer
depend on the logic implemented within the FPGA fabric alone.

C. Fundamentals of Graphics Processing Units (GPUs)

Computer-graphics applications require highly parallel com-
putations for scaling in time (low latency) and space (millions
of pixels). GPUs were designed to meet these requirements
and later evolved to become powerful accelerators for use in
graphics-based computer-vision applications. NVIDIA strate-
gically positioned its GPUs to also be ubiquitous general-
purpose parallel computers by introducing the CUDA API and
extensive supporting tool chains. AMD provides an alternative
GPU ecosystem complete with open-source drivers, but it is
not as widely supported in popular computer-vision libraries.

As we describe in Sec. III-B, analysis for timing predictabil-
ity of GPUs can be even more difficult than analysis of multi-
core CPUs. The number and complexity of the processing cores
and the multiple levels of execution scheduling in hardware and
device drivers are the primary factors. Unfortunately, NVIDIA
GPUs are effectively black boxes – their inner details are locked
behind restrictive NDAs and incomplete documentation. Timing
analysis of GPUs also depends on how access to the GPU is
arbitrated: this can be via synchronization protocols, a server
or other middleware, or through the use of the existing or
modified GPU drivers. Additionally, as computer-vision algo-
rithms are typically designed for throughput rather than timing
predictability, algorithmic changes are often necessary when
using multicore+GPU platforms for autonomous systems.

II. MULTICORE+FPGA PLATFORMS

A. “Traditional” FPGA Fabric vs. Heterogeneous FPGA-SoCs

In contrast to the earlier Flash-based Complex Programmable
Logic Devices (CPLDs), the majority of current FPGAs relies
on volatile SRAM cells to implement arbitrary digital functions.
During offline design, synthesis and implementation phases, the
system designer describes the desired functionality by means of
HDLs and Intellectual Property (IP) cores. Together with timing
constraints at the level of a single clock cycle, the vendor’s tools
then break the desired overall functionality into relatively small
chunks of combinatorial circuits with – if necessary – single-bit
downstream registers to form a multi-stage processing pipeline.

Each of those subcircuits is then mapped to one Configurable
Logic Block (CLB) within the reconfigurable FPGA fabric that
consists of an architecture-dependent number of (SRAM-based)
LUTs and registers. Each LUT implements one small Boolean
function by mapping its n-bit input signal to a single-bit output,
which, optionally, can be registered. By combining from dozens
up to many thousands of such CLBs, complex digital blocks are
implemented without the financial/temporal overhead of custom
ASICs. The cut-out within Fig. 2 (top right) also shows various
other fabric internals found in today’s FPGA architectures. This
includes not only dedicated memories and multiply-accumulate
(MAC) blocks (which are more area- and energy-efficient than a



Fig. 2: Heterogeneous FPGA Architecture with a fixed-function
dual-core CPU Subsystem (PS) and reconfigurable Fabric (PL)

solution entirely based on CLBs) but also crucial components to
control/interface the implemented logic with the outside world.
Whilst Input/Output (I/O) blocks at the edges of the device link
hundreds of internal signals to physical pins, dedicated clocking
resources such as Phase-locked Loops (PLLs) generate a variety
of clock signals that are distributed across the entire device via
carefully balanced clock trees (not shown in Fig. 2) to ensure an
efficient, fully synchronous operation of fabric CLBs, memories
and MACs. Similarly, regular data/control signals both between
CLBs, and from/to I/O blocks and internal logic are routed via a
large, programmable signal interconnect, accounting for consid-
erable area on FPGA dies. Like LUTs and signal routing within
every CLB, clock trees and signal interconnect are configured at
device start (i.e., after manufacturing) by means of writing to an
SRAM-based configuration memory to hold the tool-generated
bitstream implementing the desired digital system on an FPGA.

With today’s high-end devices featuring over a million CLBs,
FPGAs are not only widely used to prototype the next CPU and
GPU designs before tape-out, but also capable to host an entire
System-on-Chip (SoC) implementing, e.g., a Real-time System
(RTS). Due to its reconfigurability, however, the FPGA fabric is
considerably less area- and energy-efficient than an ASIC-based
implementation. As many RTSs both require the combination of
parallel and sequential computation (Sec. I-A), and thus – more
and more – depend on hardware acceleration (for, e.g., a sensor
acquisition stage) in addition to software processing, designers
increasingly instantiate a soft-core CPU subsystem in an FPGA.
For this reason, selected, recent devices/series extend traditional
FPGA fabric with a hard-core (i.e., fixed-function) CPU island.
Similar to the integrated GPU in Sec. III-A, such heterogeneous
FPGA-SoCs complement a multi-core SoC with CPUs, on-chip
bus interconnects and I/O interfaces for off-chip peripherals like
DDR memory and Ethernet. Such devices are available from all
major vendors (e.g., Xilinx Zynq or Intel Arria) and enable the
system designers to choose from a variety of SoC architectures
(ranging from single- to hexa-core CPU subsystems) and FPGA
fabrics [3], [4], yielding the most efficient RTS implementation.

The Xilinx Zynq shown in Fig. 2, for instance, comprises the
fabric-based reconfigurable Programmable Logic (PL) drawn in
light gray, and the software-driven Processing System (PS) with
its various fixed-function components (dark gray). Besides two
ARM Cortex-A9 CPUs with shared L2 cache (red/orange), AXI
interconnects (yellow) and I/O peripherals (green), four types of
bus interfaces (light blue) to the PL are crucial parts of the PS.
The latter enable a tight coupling between the software (running
on the PS CPUs), and any hardware I/O paths and/or processing

accelerators mapped to the PL. Four General-Purpose (GP), one
Accelerator Coherency Port (ACP) and four High-Performance
(HP) ports are available, with only the Master (M) GP interfaces
executing transfers from PS to PL. The remaining HP, ACP, and
two Slave (S) GP ports enable custom IP cores in the PL to use
the highly efficient PS components, e.g., for external storage to
large DDR memories, or I/O via the PS’s two GigE controllers.

B. Challenges in FPGA(-SoC) Implementation & Measurement

Due to the expressiveness of (at least some of) the hardware
description methods and the flexibility of the underlying fabric,
both the functional and temporal aspects of an individual FPGA
design unit can be rather precisely defined and/or modeled on a
per-bit and clock-cycle level. In particular using design entry on
the Register-Transfer Level (RTL), the crucial “input-to-output”
latency of many stream-driven (i.e., not data-dependent) blocks
can be calculated formally or determined using simulations. For
data-dependent processing stages, however, this problem easily
becomes as intractable as a worst-case execution time (WCET)
analysis in a purely software-based system [5]. With potential
combinations of input data and internal states out of reach of the
traditional simulation-based approaches, formal methods for the
verification of hardware are widely used [6], [7], in particular
for ASICs due to their high setup costs, and, more recently, also
FPGAs [8]. In both worlds, however, system-level simulation-
based and formal verification still can be thwarted – e.g., if used
IP cores are only available in encrypted form (and without, e.g.,
simulation model), or if assertions or properties are insufficient.

As a preceding and ubiquitous challenge for both data in- and
data dependent hardware subsystems, the fixed granularity (e.g.,
input/output data width) of certain FPGA resources like a fixed-
function MAC unit can lead to “nonlinearities” between design-
time parameters (such as numerical precision) and the efficiency
of the implemented digital circuits. This not only holds true for
temporal aspects such as latencies (affected by, e.g., the pipeline
depth), but also resource-, area-, and thus energy-related factors
like signal fan-outs or used fabric elements. Similar to the fixed-
width integer units of CPUs, the MAC blocks, for instance, have
upper limits w.r.t. supported data widths (e.g., 25 and 18 bits for
inputs and 48 bits on the output for a Xilinx 7-Series DSP slice),
which, if exceeded even by one bit, force tools and/or designers
to perform the computation sequentially – requiring no longer a
single, but, potentially, hundreds of clock cycles (and additional
fabric resources for the control logic in the FPGA’s MAC case).
Small algorithmic changes thus can have a drastic impact on the
implementation performance despite the flexibility of the fabric,
which may complicate predicting the temporal properties before
the design unit – or even an entire system – is actually available.

Once implemented and operational, most measurement-based
approaches for CPU-only architectures (e.g., monitoring of task
execution times via watermarks) can, to a certain extent, be used
for an FPGA-based RTS as well. If the latency of interest is not
at all associated with software, however, the measurement logic
required can often be added due to the flexibility of both fabric
and, in case of communication-related tasks, the I/O peripherals
of current FPGA-SoCs, which range from serial to Ethernet [9].
In contrast to FPGA-specific, cycle-accurate measurement tools



(like Xilinx’ Integrated Logic Analyzer) used to gain functional
insights, above latency watermarks/histograms are able to cover
significantly longer measurement intervals and enable statistical
analysis or modeling approaches to capture the RTS’s behavior.

Shared resources in both FPGA fabric and (for heterogeneous
architectures like the one in Fig. 2) fixed-function SoC (i.e., PS)
are an additional source of delay. More or less well-defined bus
interconnects and proprietary Ethernet IPs (in PS and/or PL) are
often part of time-critical control loops – spanning, for instance,
from input (i.e., GigE controller) via several interconnects to the
PL, and back to the PS (for software-based processing). As their
delays are variable and out of reach of even the aforementioned,
fabric-based solutions, additional sources for data are necessary.

C. Hybrid Power/State Tracing for FPGA(-SoC)-based Systems

To capture both partial and end-to-end delays of control loops
in the heterogeneous RTS as shown in Fig. 2, hybrid power/state
tracing combines functional and temporal state data from PS/PL
components with a multi-rail power measurement of the FPGA-
SoC and its external I/O devices (like Ethernet PHYs) [1]. Apart
from guiding energy optimization, the latter also captures an
architecture-dependent number of crucial temporal events (such
as the arrival time of a sensor signal at the RTS boundary using,
e.g., an Ethernet-based communication backbone like in Fig. 2).
The cross-PS/PL latencies of used shared resources (thick lines)
thus can be analyzed by combining the temporal events from PS
and PL states with such timestamps for sensor and actuator I/O.

Open issues in tracing of complex, mixed-hardware/software
RTSs, however, remain plenty. Current solutions either occupy a
significant amount of fabric memory or require external storage,
e.g., via a Flash-based measurement system (as shown in Fig. 2,
bottom right). Whilst the former might interfere with the actual
RTS application, the latter often cannot be deployed in the field.
As further complication, the fabric signals, software sources or,
in case of hybrid tracing, measurement rails might not be known
to the full extent before operation, causing costly turnarounds.

III. MULTICORE+GPU PLATFORMS

We now provide an overview of GPU hardware and the
software that executes upon it. We then discuss challenges both
in performing timing analysis for GPU-using workloads and
when using GPU in vision applications, as well as open issues.

A. GPU Hardware and Software

We focus our attention on NVIDIA GPUs, as they are ubiqui-
tous in computer-vision and autonomous-driving applications.1

NVIDIA GPU hardware. NVIDIA GPUs consist of multiple
copy engines (CEs), which copy data to and from the GPU,
and an execution engine (EE) comprised of multiple streaming
multiprocessors (SMs). An SM services up to 2048 GPU
threads at once. Integrated GPUs (on the same chip as the
CPU), such as the NVIDIA Jetson TX2, usually have an order
of magnitude fewer SMs than discrete GPUs (on separate chips,
typically connected to the host machine via a PCI-E bus), such
as the NVIDIA Titan V.

1AMD GPUs have similar hardware constructs, so many issues and solutions
we discuss apply to them as well.

Memory Controller

DRAM1

Bank 0

DRAM1

Bank 0

DRAM

Bank 1

DRAM

Bank 1 …
DRAM

Bank n

DRAM

Bank n

DRAM

Bank 2

DRAM

Bank 2

DRAM

Bank n-1

DRAM

Bank n-1

A57 CPU 0A57 CPU 0

…
L1-I

48KB

L1-I

48KB

L1-D

32KB

L1-D

32KB

A57 CPU 3A57 CPU 3

L1-I

48KB

L1-I

48KB

L1-D

32KB

L1-D

32KB

A57 CPU shared L2 cache

2 MB

A57 CPU shared L2 cache

2 MB

GPU L2 cache

512 KB

GPU L2 cache

512 KB

Pascal GPU

SM 0SM 0 SM 1SM 1

128 cores 128 cores

Denver CPU 0Denver CPU 0

L1-I

128KB

L1-I

128KB

L1-D

64KB

L1-D

64KB

Denver CPU 1Denver CPU 1

L1-I

128KB

L1-I

128KB

L1-D

64KB

L1-D

64KB

Denver CPU shared L2 cache

2 MB

Denver CPU shared L2 cache

2 MB

Copy Engine

1DRAM bank count and size depend on device package

(a) NVIDIA Jetson TX2

Host Machine

GPU L2 cache

4608 KB

GPU L2 cache

4608 KB

Discrete Volta GPU

Titan V

SM 0SM 0

64 cores

SM 79SM 79

64 cores
...

Copy Engine 0 Copy Engine 6

…DRAM1

Bank 0

DRAM1

Bank 0

DRAM

Bank 

nCPU

DRAM

Bank 

nCPU

…
DRAM1

Bank 0

DRAM1

Bank 0

DRAM

Bank 

nGPU

DRAM

Bank 

nGPU

DRAM

Bank 1

DRAM

Bank 1

PCI-E Bus

...

(b) NVIDIA Titan V

Fig. 3: Comparison of two GPUs: (a) NVIDIA TX2 (integrated)
and (b) Titan V (discrete)

Details of two NVIDIA GPUs are depicted in Fig. 3.
NVIDIA’s TX2 SoC (inset (a)) includes a quad-core ARMv8
A57 processor, a dual-core ARMv8 Denver processor, and an
integrated GPU comprised of one CE and two SMs. In contrast,
the discrete Titan V (inset (b)) boasts seven CEs and 80 SMs.

The NVIDIA CUDA API. CUDA is a C/C++ extension
developed by NVIDIA to allow programmers to write parallel
processing GPU programs and to submit operation requests
to the GPU [10]. The CUDA API includes commands to
copy data between the CPU and the GPU memories, as well
as between multiple GPUs, and to submit programs (called
kernels) for execution on the GPU. The general structure of a
CUDA program includes (i) allocating memory on the GPU,
(ii) copying data from CPU to GPU memory, (iii) executing
one or more kernels on the GPU, (iv) copying the results back
to CPU memory, and (v) freeing any allocated memory on
the GPU. The typical kernel program is written in a single
instruction, multiple data (SIMD) form such that each GPU
thread performs the same set of instructions but using data
unique to the thread.

Kernel execution is scheduled by the GPU in groups of 32
threads, called warps. Each thread in a warp executes on a



GPU core in a SIMD fashion, using built-in CUDA variables
to determine the data for that thread. Warps are combined into
blocks, which are further grouped into grids; to request a kernel
execution, the programmer specifies the layout of threads into
grids and blocks to facilitate binding threads to data. Each
SM is comprised of a number of hardware processing cores,
scheduled by a small number of internal warp schedulers.
A warp scheduler hides execution latency by dispatching a
warp from its ready queue onto 32 of its cores when the
previously executing warp stalls for access to a hardware
resource (execution unit, memory, etc.).

NVIDIA tracing tools. Tools such as NVIDIA’s Visual Profiler
can be used to profile CUDA applications to visualize kernel
executions, copies, and other CUDA operations, and to guide
optimization steps to maximize performance. However, these
tools do not give information necessary for timing analysis
of such workloads (e.g., which SMs execute a given kernel,
context switching between different processes), and their opti-
mization recommendations do not consider interference effects.

B. Timing Analysis for GPU-Using Workloads
One or more GPUs in an autonomous system are typically

shared among multiple vision applications. A fundamental
consequence is that interference from competing demands has a
significant impact on timing behavior. Interference can be both
temporal (which tasks execute when) and spatial (competition
for shared caches, DRAM, and buses). Accounting for GPU
execution time in real-time analysis depends on how competing
demands are arbitrated – by synchronization or scheduling.
Synchronization can be realized through the use of locking
protocols to limit interference by managing access to the GPU.
Scheduling can be realized using default GPU scheduling rules
to determine potential interference; alternatively, middleware
can be used to enable modified scheduling policies.

Multicore+GPU synchronization. Given the complex or even
black-box nature of GPUs, they are often treated as monolithic
devices that must be accessed exclusively. Prior work on real-
time multicore+GPU systems has treated the GPU as a mutual-
exclusion resource (e.g., [11]–[13]). In multi-GPU systems,
identical GPUs can be treated as replicated resources [14].

Multicore+GPU scheduling. On NVIDIA GPUs, kernels sub-
mitted to the GPU from different address spaces are multi-
programmed, i.e., all resources are given to one kernel at a
time, switching between the processes’ kernels in a time-sliced
manner. Thus, true concurrency between processes is disabled
by default; to enable concurrency between multiple address
spaces, NVIDIA’s Multi-Process Server (MPS) must be used.2

For GPU kernels submitted from a single address space
(or multiple address spaces if MPS is enabled), a hierarchical
queue structure can be used to model the NVIDIA driver
scheduling mechanisms; Amert et al. provided rules to describe
the scheduling of GPU operations [15], specifying block-
level scheduling behavior. Their benchmark suite is available
online [16], and can be used to trace block-level scheduling

2MPS is only available for discrete GPUs.

behavior on NVIDIA GPUs. Sañudo et al. provided additional
details on how individual blocks are mapped to SMs [17].

Middleware or driver-level changes can be used to intercept
and reorder GPU operations. For example, Kato et al. presented
TimeGraph [18], a non-preemptive fixed-priority scheduler that
relies on modifications to the open-source Nouveau driver
for NVIDIA GPUs (their work considered only graphical
workloads, as the Nouveau driver does not support CUDA).
Extending to general-purpose computations, Capodieci et al.
demonstrated a real-time scheduler for graphical and CUDA-
using tasks [19]. They implemented a software scheduler mod-
ule within the NVIDIA Drive-PX2 driver, enabling preemptive
earliest-deadline first (EDF) scheduling on the Drive-PX2 em-
bedded platform.

In addition to allowing multiple processes to use a GPU con-
currently, MPS also enables partitioning of the EE. However, it
does not allow for partitioning of the memory hierarchy, which
can lead to conservative estimation of spatial interference. To
enable partitioning of both cache and DRAM for discrete
NVIDIA GPUs, Jain et al. developed micro-benchmarking
experiments to reverse engineer the NVIDIA GPU memory hi-
erarchy [20]. Their page coloring technique enabled “fractional
GPUs” with improved isolation between processes.

Response-time and WCET analysis for GPUs. The schedul-
ing rules of NVIDIA GPUs can be directly used to determine
response-time bounds for GPU-using workloads. Yang et al.
provided response-time analysis [21] that depends on the maxi-
mum thread requirement of any block in the system, the number
of blocks per kernel, and the number of SMs comprising the
GPU’s EE, among other parameters.

Considering WCET analysis of individual kernels, Heo et al.
provided a WCET analysis for each layer of a DNN [22]. Their
model considers both processor contention (based on eligibility
of individual warps) and memory contention. Given the closed-
source nature of NVIDIA’s cuDNN library, Heo et al. used
NVIDIA’s profiling tools to measure counters (e.g., cycle and
memory instruction counts) needed to estimate parameters for
their model. They used their WCET analysis to modify an
existing DNN pipeline, as described below.

C. Using GPUs in Vision Applications

Care must be taken when using NVIDIA GPUs in safety-
critical applications, such as vision processing in autonomous
systems. NVIDIA documentation is vague (and sometimes self
contradicting), particularly around sources of implicit blocking
delays on the GPU and even the host CPU. Such pitfalls
were explored by Yang et al. [23], and include blocking on
the CPU if any GPU-memory frees occur concurrently with
the submission of GPU operations (contrary to the expected
behavior based on the documentation).

Many popular computer-vision frameworks have support for
NVIDIA GPUs, including PyTorch and TensorFlow for deep
learning and OpenCV for general computer-vision processing.
However, such frameworks are designed for throughput rather
than predictability. Furthermore, in automotive systems, hard-
ware resources are constrained by size, weight, and power. As a
result, algorithmic changes can be necessary to enable running



vision applications as real-time tasks and maximally utilizing
multicore+GPU platforms.

Yang et al. [24] considered various parallelism and pipelining
approaches for a convolutional neural network (CNN) object-
detection application, including merging images from multiple
camera sources into a single composite image. To enable real-
time deadlines to be met for DNNs, Heo et al. modified a DNN-
based object-detection system to be able to choose between
different pre-configured network paths [22]. The different paths
are chosen at runtime based on their WCET analysis for each
layer of the network and timing requirements.

D. Open Issues
A key open issue with multicore+GPU platforms is the

exploration of AMD GPUs. Due to the open-source nature of
the AMD software stack, real-time scheduling at the driver level
could enable better predictability than is available for NVIDIA
GPUs. However, AMD GPUs are not currently as widely
supported as NVIDIA GPUs by popular vision frameworks.

Thus far, most scheduling-based approaches have focused
on middleware, negating much of the potential for concurrent
execution; Capodieci et al. [19] explored scheduling changes
within the open-source drivers available only for NVIDIA’s
embedded platforms such as the Drive-PX2, and details and
source code were not made available due to non-disclosure
agreements. For both AMD and NVIDIA GPUs, more work is
needed to evaluate GPU driver implementations with different
real-time scheduling policies for GPU kernels.

IV. CONCLUDING REMARKS

Both FPGAs and GPUs enable the acceleration of general-
purpose computations used in vision applications by means of
the parallelism offered by their architectures. However, fully
capturing the timing behavior of FPGA- and GPU-enabled
systems remains a complex endeavor. While latency analysis of
a hand-written FPGA design entity is often relatively straight-
forward, the challenges lie in estimating resource requirements
and temporal behavior before design completion, the integration
of closed-source IP cores, and hard-to-predict shared resources.

In terms of GPUs, NVIDIA currently leads the market, but
their devices and software stack target throughput rather than
predictability, and their tools do not elucidate key details needed
for full timing analysis. GPUs from AMD present a promising
alternative, but are not as widely adopted by vision frameworks.

For systems comprised of both FPGAs and GPUs in addition
to multicore CPUs, analysis such as that of Yang et al. [21]
enables response times to be computed for acyclic processing
graphs in which different graph nodes (computations) execute
on different processor types. Such analysis could enable system
designers to choose between implementing algorithm compo-
nents on the CPU, FPGA, GPU, or other accelerators. However,
the problem of accurately analyzing timing behavior – be it
mathematically or via tracing – for real-life heterogeneous
architectures and general application models, still remains a
largely open problem that needs to be addressed for better
design and verification of autonomous systems.

ACKNOWLEDGEMENTS
This work was supported by the NSF award #2038960.

REFERENCES

[1] M. Balszun, M. Geier, and S. Chakraborty, “Predictable vision for
autonomous systems,” in 23rd IEEE International Symposium on Real-
Time Distributed Computing (ISORC), 2020.

[2] M. Geier, F. Pitzl, and S. Chakraborty, “GigE vision data acquisition for
visual servoing using SG/DMA proxying,” in 14th ACM/IEEE Symposium
on Embedded Systems For Real-time Multimedia (ESTIMedia), 2016.

[3] Xilinx Inc., “All Programmable SoCs and MPSoCs,” https://www.xilinx.
com/products/silicon-devices/soc.html.

[4] Intel Corporation, “Intel SoC FPGAs Programmable Devices,” https://
www.intel.com/content/www/us/en/products/programmable/soc.html.

[5] R. Wilhelm et al., “The worst-case execution-time problem – overview
of methods and survey of tools,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 7, no. 3, pp. 36:1–36:53, May 2008.

[6] D. D. Borrione, L. V. Pierre, and A. M. Salem, “Formal verification of
vhdl descriptions in the prevail environment,” IEEE Design & Test of
Computers (D&T), vol. 9, no. 2, pp. 42–56, Jun. 1992.

[7] C. Kern and M. R. Greenstreet, “Formal verification in hardware design:
A survey,” ACM Transactions on Design Automation of Electronic Sys-
tems (TODAES), vol. 4, no. 2, pp. 123–193, Apr. 1999.

[8] D. Shah, E. Hung, C. Wolf, S. Bazanski, D. Gisselquist, and M. Mi-
lanovic, “Yosys+nextpnr: An open source framework from verilog to bit-
stream for commercial FPGAs,” in 27th IEEE Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM),
2019.

[9] M. Geier, T. Burghart, M. Hackl, and S. Chakraborty, “In situ latency
monitoring for heterogeneous real-time systems,” in 32nd International
Conference on VLSI Design and 18th International Conference on Em-
bedded Systems (VLSID), 2019.

[10] NVIDIA, “CUDA toolkit documentation v11.1.1,” Online at http://docs.
nvidia.com/cuda/.

[11] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and
R. Rajkumar, “RGEM: A responsive GPGPU execution model for runtime
engines,” in 32nd IEEE Real-Time Systems Symposium (RTSS), 2011.

[12] U. Verner, A. Mendelson, and A. Schuster, “Scheduling periodic real-time
communication in multi-GPU systems,” in 23rd International Conference
on Computer Communication and Networks (ICCCN), 2014.

[13] G. Elliott, B. Ward, and J. Anderson, “GPUSync: A framework for real-
time GPU management,” in 34th IEEE Real-Time Systems Symposium
(RTSS), 2013.

[14] C. Nemitz et al., “Multiprocessor real-time locking protocols for repli-
cated resources,” in 28th Euromicro Conference on Real-Time Systems
(ECRTS), 2016.

[15] T. Amert et al., “GPU scheduling on the NVIDIA TX2: Hidden details
revealed,” in 38th IEEE Real-Time Systems Symposium (RTSS), 2017.

[16] N. Otterness, “Cuda scheduling viewer,” https://github.com/yalue/cuda
scheduling examiner mirror, 2020 (accessed 29 November 2020).

[17] I. S. Olmedo, N. Capodieci, J. L. Martinez, A. Marongiu, and
M. Bertogna, “Dissecting the CUDA scheduling hierarchy: a performance
and predictability perspective,” in 26th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2020.

[18] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “TimeGraph:
GPU scheduling for real-time multi-tasking environments,” in USENIX
Annual Technical Conference, 2011.

[19] N. Capodieci, R. Cavicchioli, M. Bertogna, and A. Paramakuru,
“Deadline-based scheduling for GPU with preemption support,” in 39th
IEEE Real-Time Systems Symposium (RTSS), 2018.

[20] S. Jain, I. Baek, S. Wang, and R. Rajkumar, “Fractional GPUs: Software-
based compute and memory bandwidth reservation for GPUs,” in 25th
IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2019.

[21] M. Yang et al., “Making OpenVX really ‘real time’,” in 39th IEEE Real-
Time Systems Symposium (RTSS), 2018.

[22] S. Heo, S. Cho, Y. Kim, and H. Kim, “Real-time object detection system
with multi-path neural networks,” in 26th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2020.

[23] M. Yang et al., “Avoiding pitfalls when using NVIDIA GPUs for real-
time tasks in autonomous systems,” in 30th Euromicro Conference on
Real-Time Systems (ECRTS), 2018.

[24] ——, “Re-thinking CNN frameworks for time-sensitive autonomous-
driving applications: Addressing an industrial challenge,” in 25th IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2019.




