
Race Conditions
Aaron Smith
COMP 301

May 5, 2021

Review

Models of Programming

Models of Computing

Sequential Computing
Only one task can be executed

at a time; the current task
must complete before the next

one can begin

Concurrent Computing
Multiple tasks can be executed

during overlapping time
periods, either in parallel or by

context switching

Parallel Computing
Multiple tasks can

simultaneously be executed on
separate processing elements

Synchronous Programming
The program waits for a task to finish

completely before continuing on

Asynchronous Programming
The program continues on without

waiting for a method to finish

Poll Everywhere (1)

public class Example {
public static void main(String[] args) {
System.out.print("a");

Runnable task = () -> {
System.out.print("b");

};

System.out.print("c");
task.run();
System.out.print("d");

}
}

Prompt: What will this program print?

To answer, go to
https://pollev.com/onsmith

https://pollev.com/onsmith

Poll Everywhere (1)

public class Example {
public static void main(String[] args) {
System.out.print("a");

Runnable task = () -> {
System.out.print("b");

};

System.out.print("c");
task.run();
System.out.print("d");

}
}

Prompt: What will this program print?

To answer, go to
https://pollev.com/onsmith

Does the output change
if "c" is moved above
the task definition?

https://pollev.com/onsmith

Poll Everywhere (1)

public class Example {
public static void main(String[] args) {
System.out.print("a");
System.out.print("c");

Runnable task = () -> {
System.out.print("b");

};

task.run();
System.out.print("d");

}
}

Prompt: What will this program print?

To answer, go to
https://pollev.com/onsmith

Does the output change
if "c" is moved above
the task definition?

https://pollev.com/onsmith

Poll Everywhere (2)

public class Example {
public static void main(String[] args) {
System.out.print("a");

Runnable task = () -> {
System.out.print("b");

};

System.out.print("c");
Thread thread = new Thread(task);
thread.start();
System.out.print("d");

}
}

Prompt: What will this program print?

To answer, go to
https://pollev.com/onsmith

https://pollev.com/onsmith

Waiting for a Thread to finish
The join() method

Waiting for a Thread to finish

public static void main(String[] args) {
Runnable task =

() -> {
for (int i = 0; i < 10; i++) {
System.out.print(i);
System.out.print(" ");

}
};

Thread thread1 = new Thread(task);
thread1.start();

Thread thread2 = new Thread(task);
thread2.start();

System.out.println("Finished!");
}

This task prints the
numbers 1 – 10 with a
space in between

Perform the task twice
asynchronously

Print “Finished!”

0 1 2 3 4 5 6 7 8 9

Waiting for a Thread to finish

public static void main(String[] args) {
Runnable task =

() -> {
for (int i = 0; i < 10; i++) {
System.out.print(i);
System.out.print(" ");

}
};

Thread thread1 = new Thread(task);
thread1.start();

Thread thread2 = new Thread(task);
thread2.start();

System.out.println("Finished!");
}

Will this line run after
the threads complete?

No! It’s asynchronous

Sample output:

Finished!
00 1 1 2 3 2 4 3 5 4 5 6 7 8 6 9 7 8 9

Waiting for a Thread to finish

public static void main(String[] args) {
Runnable task =

() -> {
for (int i = 0; i < 10; i++) {
System.out.print(i);
System.out.print(" ");

}
};

Thread thread1 = new Thread(task);
thread1.start();

Thread thread2 = new Thread(task);
thread2.start();

System.out.println("Finished!");
}

Sample output:

Finished!
00 1 1 2 3 2 4 3 5 4 5 6 7 8 6 9 7 8 9

Waiting for a Thread to finish

public static void main(String[] args) {
Runnable task =

() -> {
for (int i = 0; i < 10; i++) {
System.out.print(i);
System.out.print(" ");

}
};

Thread thread1 = new Thread(task);
thread1.start();

Thread thread2 = new Thread(task);
thread2.start();

thread1.join();
thread2.join();

System.out.println("Finished!");
}

Pause the main() thread
until thread1 and
thread2 are finished

Sample output:

0 1 2 3 0 1 2 3 4 5 64 7 8 9 5 6 7 8 9 Finished!

Race conditions
When the timing of execution affects the result

Race conditions

Race condition – A segment of concurrent code where the timing of
execution affects the result

Race conditions occur when two or more threads share memory
 Multiple threads reading from or writing to the same object

What can go wrong?
 Two threads write to a field at the same time

– Who wins? It’s a race!
 One thread reads a field, but then another thread overwrites it

– Stale values

Example: A shared Counter class
public class Counter {
private int value;

public Counter() {
value = 0;

}

public void addOne() {
value = getValue() + 1;

}

public void subtractOne() {
value = getValue() - 1;

}

public int getValue() {
return value;

}
}

Encapsulates an integer

The integer starts at 0

Can “increment”
the integer

Can “decrement”
the integer

Can get the current
integer value

Example: Using the Counter class
public static void main(String[] args) throws InterruptedException {

Counter counter = new Counter();

Thread thread1 = new Thread(() -> {
for (int i = 0; i < 100000; i++) {

counter.addOne();
}

});

Thread thread2 = new Thread(() -> {
for (int i = 0; i < 100000; i++) {

counter.subtractOne();
}

});

thread1.start();
thread2.start();

thread1.join();
thread2.join();

System.out.println(counter.getValue());
}

One thread increments the
counter 100,000 times

The other thread decrements
the counter 100,000 times

Afterwards, print the value

Example: Using the Counter class
public static void main(String[] args) throws InterruptedException {

Counter counter = new Counter();

Thread thread1 = new Thread(() -> {
for (int i = 0; i < 100000; i++) {

counter.addOne();
}

});

Thread thread2 = new Thread(() -> {
for (int i = 0; i < 100000; i++) {

counter.subtractOne();
}

});

thread1.start();
thread2.start();

thread1.join();
thread2.join();

System.out.println(counter.getValue());
}

Sample output:

-2782

A closer look at Counter
public class Counter {
private int value;

public Counter() {
value = 0;

}

public void addOne() {
value = getValue() + 1;

}

public void subtractOne() {
value = getValue() - 1;

}

public int getValue() {
return value;

}
}

This 1 line of code is
actually 3 operations!
1. Get the value
2. Add 1 to that number
3. Set the value

A closer look at Counter
public class Counter {
private int value;

public Counter() {
value = 0;

}

public void addOne() {
value = getValue() + 1;

}

public void subtractOne() {
value = getValue() - 1;

}

public int getValue() {
return value;

}
}

Thread 1, addOne()
1. Get the value (0)
2. Add 1 to that number

3. Set the value (1)

Thread 2, subtractOne()
1. Get the value (0)
2. Subtract 1 from that number

3. Set the value (-1)

This is a race condition!
Depending on which line

executes first, value
might be 1 or -1!

Imagine value = 0, when both
addOne() and subtractOne()

are called concurrently

Example: Using the Counter class
public static void main(String[] args) throws InterruptedException {

Counter counter = new Counter();

Thread thread1 = new Thread(() -> {
for (int i = 0; i < 100000; i++) {

counter.addOne();
}

});

Thread thread2 = new Thread(() -> {
for (int i = 0; i < 100000; i++) {

counter.subtractOne();
}

});

thread1.start();
thread2.start();

thread1.join();
thread2.join();

System.out.println(counter.getValue());
}

If both methods execute at the
same time, there’s a chance
that only one will take effect

But which method takes
effect is completely

unpredictable!

Synchronized methods
Enforcing mutual exclusion in Java

Mutual exclusion

These methods simply can’t be
executed at the same time

 Concurrency of these methods
results in a race condition

 In general, this occurs any time you
read or write to data that in
memory shared between threads

We say that these methods must be
made mutually exclusive

public class Counter {
private int value;

public Counter() {
value = 0;

}

public void addOne() {
value = getValue() + 1;

}

public void subtractOne() {
value = getValue() - 1;

}

public int getValue() {
return value;

}
}

Synchronization

Solution: add the synchronized
keyword to all methods that must be
made mutually exclusive

 Usually, every method that reads or
writes field values should be
synchronized

What does this do?

public class Counter {
private int value;

public Counter() {
value = 0;

}

public synchronized void addOne() {
value = getValue() + 1;

}

public synchronized void subtractOne() {
value = getValue() - 1;

}

public synchronized int getValue() {
return value;

}
}

Java ensures that no two synchronized
methods of a given instance will ever be

executed at the same time by different threads

Using synchronized methods
public static void main(String[] args) throws InterruptedException {

Counter counter = new Counter();

Thread thread1 = new Thread(() -> {
for (int i = 0; i < 100000; i++) {

counter.addOne();
}

});

Thread thread2 = new Thread(() -> {
for (int i = 0; i < 100000; i++) {

counter.subtractOne();
}

});

thread1.start();
thread2.start();

thread1.join();
thread2.join();

System.out.println(counter.getValue());
}

Sample output:

0

With synchronization,
the output is predictable

Synchronization is achieved using locks

public class Counter {
private int value;

public Counter() {
value = 0;

}

public synchronized void addOne() {
value = getValue() + 1;

}

public synchronized void subtractOne() {
value = getValue() - 1;

}

public synchronized int getValue() {
return value;

}
}

How does Java enforce mutual
exclusion of synchronized methods?

Internally, the JVM creates a lock for
every instance of the class that is

synchronized (e.g. Counter)

From Oracle’s documentation: A lock is a tool for controlling
access to a shared resource by multiple threads. Commonly, a
lock provides exclusive access to a shared resource: only one

thread at a time can acquire the lock and all access to the
shared resource requires that the lock be acquired first.

Read about the Lock interface: https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/Lock.html

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/Lock.html

Manually using
Java’s Lock interface

public class Counter {
private int value;
private Lock lock;

public Counter() {
value = 0;
lock = new ReentrantLock();

}

public void addOne() {
lock.lock();
value = getValue() + 1;
lock.unlock();

}

public void subtractOne() {
lock.lock();
value = getValue() - 1;
lock.unlock();

}

public int getValue() {
lock.lock();
int v = value;
lock.unlock();
return v;

}
}

public class Counter {
private int value;

public Counter() {
value = 0;

}

public synchronized void addOne() {
value = getValue() + 1;

}

public synchronized void subtractOne() {
value = getValue() - 1;

}

public synchronized int getValue() {
return value;

}
}

Illustration of how
synchronized is implemented

Acquire the lock, waiting if
necessary until it is available

Release lock after
critical section finishes

Every Counter instance
has its own lock

ReentrantLock is the
lock implementation

used for synchronized

Critical section occurs
once the lock is acquired

Best Practice

Best practice: unlock() in finally

public void subtractOne() {
lock.lock();
value = getValue() - 1;
lock.unlock();

}

public void subtractOne() {
lock.lock();
try {

value = getValue() - 1;
} finally {

lock.unlock();
}

}

public int getValue() {
lock.lock();
int v = value;
lock.unlock();
return v;

}

public int getValue() {
lock.lock();
try {

return value;
} finally {

lock.unlock();
}

}

Need to ensure the lock is
always released! What if an
exception is thrown and the

method never finishes?

If the thread never releases
the lock, other threads will
never be able to acquire it!

This is called deadlock

Bottom line

Parallelization can speed up your job by doing multiple tasks at once
 Must have tasks that inherently can be parallelized

Concurrent read/write to shared memory causes race conditions
 Program behavior is unpredictable because it depends on timing

Methods that read or write shared state must be synchronized
 Forces the methods to be executed with mutual exclusion
 This behavior is enforced with a lock

Deadlock occurs when a thread can’t acquire the lock it needs to finish

Learn more at https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html

	Race Conditions
	Announcements
	Review
	Poll Everywhere (1)
	Poll Everywhere (1)
	Poll Everywhere (1)
	Poll Everywhere (2)
	Waiting for a Thread to finish
	Waiting for a Thread to finish
	Waiting for a Thread to finish
	Waiting for a Thread to finish
	Waiting for a Thread to finish
	Race conditions
	Race conditions
	Example: A shared Counter class
	Example: Using the Counter class
	Example: Using the Counter class
	A closer look at Counter
	A closer look at Counter
	Example: Using the Counter class
	Synchronized methods
	Mutual exclusion
	Synchronization
	Using synchronized methods
	Synchronization is achieved using locks
	Manually using�Java’s Lock interface
	Best practice: unlock() in finally
	Bottom line
	Final announcements
	Final announcements
	The End

