
P A R A L L E L
C O M P U T I N G

ELSEVIER Parallel Computing 20 (1994) 633-655

The Linda ®* alternative to message-passing systems

Nicholas J. Carriero a, David Gelernter a, Timothy G. Mattson b,,,
Andrew H. Sherman c,.

a Department o f Computer Science, Yale University, New Haven, CT 06520, USA
b Intel Supercomputer Systems Division, 14924 N.. W. Greenbrier Parkway, Beaverton, OR 97006, USA

c Scientific Computing Associates, Inc. One Century Tower, 265 Church Street, New Haven, CT
06510-7010, USA

(Received 17 May 1993; revised 25 November 1993)

Abstract

The use of distributed data structures in a logically-shared memory is a natural,
readily-understood approach to parallel programming. The principal argument against such
an approach for portable software has always been that efficient implementations could not
scale to massively-parallel, distributed memory machines. Now, however, there is growing
evidence that it /s possible to develop efficient and portable implementations of virtual
shared memory models on scalable architectures. In this paper we discuss one particular
example: Linda. After presenting an introduction to the Linda model, we focus on the
expressiveness of the model, on techniques required to build efficient implementations, and
on observed performance both on workstation networks and distributed-memory parallel
machines. Finally, we conclude by briefly discussing the range of applications developed
with Linda and Linda's suitability for the sorts of heterogeneous, dynamically-changing
computational environments that are of growing significance.

Key words: Message passing; LINDA; Virtual shared memory; Evaluation; Parallel pro-
gramming paradigm

1. Introduct ion

Mos t of the p a p e r s in this specia l issue dea l wi th message -pass ing l ibrar ies .
Message pass ing is a coo rd ina t i on m o d e l tha t ar ises d i rec t ly f rom the a rch i t ec tu re

* Corresponding author.
* Linda is a registered trademark of Scientific Computing Associates, Inc.
* Dr. Mattson participated in this work prior to joining Intel, while he was affiliated with both Yale
University and Scientific Computing Associates, Inc.

0167-8191/94/$07.00 © 1994 Elsevier Science B.V. All rights reserved
SSD! 0167-8191(93)E0102-2

634 N.J. Carriero et al. / Parallel Computing 20 (1994) 633-655

of networks and distributed-memory multiprocessors. Communication in such
systems takes place via clumps of data, or 'messages,' sent from one address space
to another - reflecting the fact that sending bits over a wire is the physical
communication mode in those environments. An alternative model, coordination
by means of a virtual shared memory, comes about in a very different way - it
arises naturally from a familiar paradigm for writing parallel programs, namely,
multiple processes interacting by means of shared data.

The use of distributed data structures in a logically-shared memory is a natural,
readily-understood approach to parallel programming. After all, it represents a
minimal extension of the underlying basis for sequential programming, and it has
been used widely on shared-memory parallel hardware. The principal argument
against such an approach for portable software has been that efficient implementa-
tions could not scale to massively-parallel, distributed memory machines. As a
result, paradigms like message-passing were developed to cater to non-shared-
memory architectures.

Now, however, there is growing evidence that it is possible to develop efficient
and portable implementations of virtual shared memory models on scalable archi-
tectures. The example we discuss in this paper is Linda, specifically the commercial
C- and Fortran-based systems available from Scientific Computing Associates, Inc.
With Linda, programmers can develop programs that use a shared-memory model,
are portable, and achieve high performance over a wide range of machines and
networks, independent of whether the hardware itself provides any support for
shared memory (either real or virtual).

In this paper we address a number of issues regarding Linda and contrast it with
message passing. After presenting an introduction to the Linda model, we will
focus mainly on expressivity of the model, on performance issues, and on flexibility
and usability. Because of the great amount of interest in cluster or farm comput-
ing, particularly on heterogeneous collections of powerful RISC workstations, we
frame much of our discussion in terms of a network setting. However, Linda is
widely used on other architectures as well, so we also include some basic discussion
of performance in such settings. Finally, in our concluding remarks, we briefly
address two additional important issues that go to the heart of Linda's long term
viability:
(1) Linda's impact in practice (that is, the range of applications developed with

Linda); and
(2) Linda's adaptability (that is, its suitability for the sorts of heterogeneous,

dynamically-changing computational environments that are of growing signifi-
cance).

2. The Linda model

We begin our discussion by providing some basic background on Linda. Here
and throughout this paper, we will consider only the commercial releases of
C-Linda [24] and Fortran-Linda [25] from Scientific Computing Associates, Inc.

N.J. Carriero et al. / Parallel Computing 20 (1994) 633-655 635

(SCIENTIFIC). In part, this restriction is due to some significant differences in
syntax and semantics between SCIENTIFIC's language-level systems and other
library-based implementations of Linda-like systems with which we are familiar.
More importantly, though, the performance of any Linda implementation depends
heavily on the levels of optimization achieved at compile-time and at run-time, and
we have direct knowledge of the details only for SCIENTIFIC's systems.

As a language extension, Linda comprises a small number of powerful opera-
tions that may be integrated into a conventional base programming language,
yielding a dialect that supports parallel programming. Thus, for example, C and
Fortran with the addition of the Linda operations become the parallel program-
ming languages C-Linda and Fortran-Linda. SCIENTIFIC's implementations
translate from the Linda parallel language (C-Linda or Fortran-Linda) into the
corresponding base language (C or Fortran), automatically generate required
auxiliary routines, and incorporate optimized kernel libraries to support the Linda
operations at run-time. Portability comes from the consistency of the language
processing between systems, while efficiency comes from the use of native C and
Fortran compilers for the actual generation of object code, and from hardware-
specific implementations of the kernels. Commercial versions of Linda now run
well on a broad range of parallel computers, from shared-memory multiprocessors,
to distributed-memory machines such as hypercubes, to networks of workstations.
Since Linda has been discussed at length in the literature (e.g. [2,3,11,13]), we
provide a relatively brief description here.

Linda-based languages and their associated run-time systems provide support
for the Linda programming model, which is a memory model based on a virtual,
associative, logically-shared memory called tuple space. Tuple space contains a
collection of ordered sequences of data called tuples. Each field of a tuple contains
actual data in the form of one of the valid types (including aggregates like arrays,
structures, and, in the case of Fortran-Linda, common blocks) of the base pro-
gramming language. For example, the following are valid tuples in Fortran-Linda: 1

('comment string', 1, 12, 4.99)

('logical data', .FALSE.)

('array data', [I 3 5 7])

Tuples may be created and inserted into tuple space in two different ways:
serially or in parallel. Serial creation is accomplished using Linda's ou t operation.
For example, assuming that a is a R E n L one-dimensional array and that f () is a
R E A L-valued Fortran function subprogram, then the following o u t operations both
produce (different) 4-field tuples:

out('north', i, j, a)

1 When necessary for clarity, we use the notation '[...]' to delimit aggregate tuple fields. Such fields
always differ from sequences of single-valued fields. We also note that use of a string as the first field is
purely stylistic, though it may somet imes permit better discrimination of tuple classes during optimiza-
tion and thus lead to better performance.

636 N.J. Carriero et a l . / Parallel Computing 20 (1994) 633-655

o r

out('table entry', i, j, f(i,j))

When the out operat ion is used, all tuple fields (which appear as arguments to
o u t) are completely evaluated serially by the process containing the o u t. Following
evaluation, the resulting tuple is installed in tuple space as a passive data tuple,
and the process continues with the next statement.

Linda's e v a t operat ion is used for parallel creation of tuples, as in

eval('table entry', i, f(i))

In principle, all arguments to eva t are evaluated in parallel, in separate
processes, while the original process continues immediately. For efficiency, how-
ever, most implementat ions actually evaluate fields serially, as with o u t , except for
those fields containing procedure invocations. As in this example, the eva t
operat ion may cause the creation of new independent processes (here to evaluate
f (i)), which run in parallel and accomplish work by creating, using, and consum-
ing tuples. After all the arguments to eva I have been completely evaluated, 2 the
resulting tuple is installed in tuple space, just as with o u t. Once a tuple has been
inserted into tuple space, the manner of its creation is irrelevant; identical tuples
created by different Linda operations are indistinguishable.

Tuple space is an associative memory. Tuples have no addresses; they are
selected for retrieval on the basis of any combination of their field values. Thus the
five-element tuple (A, B, C, D, E) may be referenced as ' the five-element tuple
whose first element is A, ' or as ' the five-element tuple whose second element is B
and fifth is E ' or by any other combination of element values. Linda provides two
basic operations to retrieve data from tuples in tuple space: in and rd . i n (S)

causes some tuple t that associatively matches the template s to be withdrawn from
tuple space, rd(s) is identical to i n(s), except that the matching tuple t remains in
tuple space.

A template is a sequence of typed fields that may be either actual values (just as
in tuples), or formal place-holders. Roughly, a tuple t matches the template s if
both have the same number of fields, the types of the fields match pairwise, and
each actual value in s matches the value in the corresponding field of t. If a
suitable t is found, the values of the actuals in t are bound to the corresponding
formals in s, and the invoking process continues. I f no matching t is available
when in(s) or rd(s) executes, the invoking process suspends until one becomes
available, after which time it proceeds as before. If many matching t ' s are
available, one is chosen arbitrarily.

To read the five-element tuple (A, B, C, D, E) using the first description given
above, one would write r d (A , ?w, ?x , ?y , ? z) . In this case A is an actual
paramete r to be matched against, and w through z are formals whose values will be
filled in from the matched tuple. To read the same tuple using the second
description given above, one would write r d (? v , B , ? x , ? y , E).

2 A procedure evaluates to its return value, or to INTEGER 0, in the case of Fortran subroutines.

N.J. Carriero et al. / Parallel Computing 20 (1994) 633-655 637

3. Evaluating Linda

As noted in the Introduction, we want to discuss Linda's effectiveness as a
programming model and to contrast its performance with that of message passing
in a number of settings. One way to evaluate a programming model is to examine
its expressiveness - what can be expressed, and how easily and concisely. We will
address both of these topics: first, by examining Linda's ability to support a
number of different parallel programming paradigms, and second, by looking at
how it can be applied to a particular class of computations implemented frequently
on scalable parallel architectures. Expressiveness by itself, of course, is not
especially valuable if it comes with a substantial loss of efficiency. In order to
address the common misconception that efficient implementations of virtual shared
memories are unachievable, we next discuss some of the optimization techniques
used to implement Linda systems efficiently. Finally, to confirm our assertion that
Linda can be both expressive and efficient, we present a number of performance
results both for networks and for arguably-scalable parallel architectures.

3.1 Support for parallel programming paradigms

Linda provides excellent support for a wide variety of approaches to parallel
programming. One particular paradigm that has been used frequently with Linda
is known as the Master/Worker Model [13]. Typically, this entails the use of
distributed data structures and a group of worker processes (not necessarily
identical) that examine a n d / o r modify the data structures in parallel under the
general supervision of a master process (which may, itself, do work as well). A
great strength of the Linda model is its explicit support for distributed data
structures, i.e. data structures that are uniformly and directly accessible to many
processes simultaneously. Any tuple sitting in Linda tuple space meets this
criterion: it is directly accessible - via the Linda operations described above - to
any process using that tuple space. Thus, a single tuple constitutes a simple
distributed data structure, but it is easy and often useful to build more complicated
multi-tuple structures (arrays, queues, or tables, for example) as well. By compari-
son, message passing systems deal solely with transient data (messages) that exist
for only a limited time: between assembly by the sender and disassembly by the
receiver. Moreover, the messages are accessible only to two processes and at
specific times: the sender before transmission and the receiver after transmission.

Another feature of the Linda model is its intentionally loose coupling among
processes. Some other models implicitly or explicitly bind processes tightly to-
gether. Taken to an extreme, this gives data parallel or SIMD models in which all
processes perform identical operations in lock step. Even message passing assumes
that there is significant underlying synchronization between message senders and
receivers. In contrast, Linda processes can be designed to know exactly as much
about one another as is appropriate for the programming situation at hand. Since
processes interact only through the intermediation of data stored in tuple space,
programmers need not think in terms of any particular logical process architecture,

638 N.J. Carriero et al. / Parallel Computing 20 (1994) 633-655

.:].~:.~:...~...:]...~!:~.~:,::]::!:.~:::].;.::':..::

iii!]ii.iiii i;!i ii,lii-i- ilf i- i -T! ii,liiiii.ili,i.!
tD

X

Fig. 1. Domain decomposition for rectangular region.

:::! ~i,::i ;i

.... t....~....I., i

NX

nor even in terms of simultaneously-executing processes. This simplifies greatly the
potentially formidable task of parallel programming, since each individual process
can be developed more-or-less independently of the others.

Linda's loose interprocess coupling has other advantages as well. Tuple space
can be viewed as a long term data memory - once installed, tuples remain in tuple
space until they are explicitly removed by some process. Thus, processes can
interact through time as well as space (or machine location), since the producer
and consumer of a tuple need never coexist simultaneously. A natural application
of this idea arises when parallel computations produce output data that must later
be used as inputs by completely independent visualization programs or other
postprocessors. This sort of interaction is easy to express in Linda, but may well be
extremely difficult to express using paradigms like message passing for which the
'data' (i.e. messages) have no long term existence.

The Linda model is extremely flexible and can support both static and dynamic
load balancing strategies. Static strategies generally arise from fixed decomposi-
tions of large data structures into pieces that are assigned to and managed by the
individual processes. For example, an array containing the values of some variable
in every cell of a computational grid can be decomposed into non-overlapping
pieces corresponding to subgrids, with each process taking responsibility for all
computations involving one piece (see Fig. 1). If a process should require data
from another process's piece, it then has to acquire that data from the owning
process using some appropriate data sharing protocol. The efficiency of such an
arrangement depends on a suitable decomposition in which relatively few data
transfers are required between processes. In general, any repetitive computation
can only be well balanced statically if the pieces owned by the different processes
require roughly equal amounts of computation.

Implementing a static strategy in Linda is straightforward: each process stores
its piece of the data locally, and data tuples containing subdomain boundary data
are created when data sharing is required. This is efficient because most of the

N.J. Carriero et al. / Parallel Computing 20 (1994) 633-655 639

data is in local (private) storage, and tuple space and Linda operations are used
only for necessary data sharing. Since efficient Linda implementations exist for a
wide variety of machines, software developers can easily build software that
achieves high performance while still retaining portability.

There are many situations, however, where static load balancing strategies fail
because it is impossible to create an even division of labor based on a priori
analysis. Therefore, it is important that Linda can efficiently support dynamic load
balancing strategies as well as static ones. One technique for doing so involves
viewing tuple space as a 'bag' of tasks to be performed, with individual tuples
holding the inputs for a single task. Processes can acquire one of these 'task
tuples,' perform the required work, and create a new tuple containing the results.
Load balance occurs almost automatically, even with heterogeneous processors,
since processes that complete tasks quickly can complete several tasks in the time
taken by other processes to complete just one. The key to the efficiency of this
approach is that there need be no a priori assignment of tasks to processes; the
Linda operations implicitly support the notion that processes can acquire task
tuples exactly as rapidly as they are ready for them. Moreover, a simple extension
of this idea, using an ordered task queue, rather than a bag, can yield good
performance even in the presence of variably-sized tasks, for which it is important
to perform larger tasks first.

To illustrate the simplicity and elegance of a Linda approach to dynamic load
balancing, we examine a Fortran-Linda program fragment that implements a
dynamically-balanced approach to the phase behavior computations arising in
compositional petroleum reservoir simulation. In the program fragment shown in
Fig. 2, it is assumed that each worker process is responsible for one subdomain of
the computational mesh (as in Fig. 1, for example), and, as is often the case in
practice, that the cost of solving the single-cell nonlinear phase behavior equations
(in the routine pvtcai, c) is at once both large and extremely variable, not only
from grid cell to grid cell within a time step, but also from time step to time step
for any given cell. To achieve dynamic load balance, each worker begins by
creating a large number of task tuples containing the worker's logical task number,
a local cell number, and the input data for that cell. After creating all of its task
tuples, each worker enters a loop in which it grabs a task, carries out the necessary
computation, and deposits a result tuple in tuple space. Finally, each worker
retrieves the results for its own cells. Of course, it is possible to refine this
approach in a variety of ways to improve performance, but the basic idea remains
the same. For a full discussion of this particular application, see [27].

3.2 Expressiveness for a typical application

Linda has often been described as a highly expressive coordination model - one
that lends itself to clear and concise programs. It's impossible to 'prove' such an
assertion, of course, but one way to support it is to examine representative
programming examples offered by developers of other systems, recode them in
Linda, and compare. For example, Carriero and Gelernter [14,15] have done this

640 N.J. Carriero et al. / Parallel Computing 20 (1994) 633-655

c
c task tuple creation loop
c

if (my_last_cell .eq. total_cells) out('cells left', totalcells)
do i = my_first_cell, my_last cell

out('pvt data', my_proc_num, i, p(i), t(i))
enddo

c
c grab tasks and do the computation
c

do i = l, total_cells
in('cells left', ?count)
out('cells left', count-l)
if (count .le. O) go to I0
in('pvt data', ?proc_num, ?j, ?pressure, ?temp)
call pvtcalc(pressure, temp, ..., satl, satv, ...)
out(Spvt results', proc_num, j, satl, satv)

enddo
i0 continue

c
c result collection loop
c

do i = my_first_cell, my_last cell
in('pvt results', my_proc_num, ?j, ?satl, ?satv, ...)
sl(j) = satl
sv(j) = satv

enddo

Fig. 2. Simple program for dynamic load balancing.

for a number of popular systems. In this section, we take a somewhat different
approach in which we examine the advantages of using Linda to express a type of
computation often implemented on scalable parallel architectures using message-
passing systems.

The particular computation we consider here is the use of a simple explicit
method for finite difference solution of a two-dimensional time-dependent
parabolic partial differential equation on a rectangular domain. A standard ap-
proach to parallel implementation of such a method is based on the idea of
domain decomposition: the computational domain is divided approximately evenly
among a group of processors, each member of which is responsible for advancing
the solution in its own subdomain. There are a number of ways to do this, and we
focus on the use of subdomains that are two-dimensional tiles (see Fig. 1). Because
of the local nature of finite difference approximations, the computations in each
subdomain are independent of the others, except at the subdomain edges, where
data must be exchanged with the processors responsible for neighboring subdo-
mains. In general, the computation within a subdomain dominates the cost of data
exchange across the subdomain boundaries, though that is certainly dependent on
the size of the mesh, the number and kind of processors, and the medium through
which data is exchanged.

The description of the computational process makes it sound like a natural
application for message passing, and, indeed, there have been numerous imple-
mentations based on various message-passing paradigms. Deshpande and Schultz
[17] discuss problems like this, comparing message-passing and Linda implementa-

N.J. Carriero et al. / Parallel Computing 20 (1994) 633-655 641

tions developed in C and run on a variety of platforms. Here, however, we want to
examine the ways in which Linda's expressivity can ease the implementation in
Fortran of this type of finite difference computation.

Figs. 3a and 3b show fragments of a Fortran-Linda program that takes a
specified number (nts) of time steps of an explicit Euler-type scheme to advance
the solution u(x, t) of the heat equation

()U O2U ~)2U
- - _ _ - [- - -

8t 0X 2 Oy2

with suitable boundary and initial conditions on a rectangular nx × ny computa-
tional mesh. For a timestep dt and a uniform mesh spacings dx and dy (in the x
and y directions, respectively), the basic computational equation (ignoring the
boundary conditions) is given by:

u(x , y, t+ dt) = u(x , y, t)

dt
+ ~--~{u(x + dx, y, t) + u (x - d x , y, t) - 2 u (x , y, t)}

dt
+ dy 2 {u(x , y + dr, t) + u(x , Y - dr, t) - 2 u (x , y, t)}

While this method is only useful in practice for restricted values of dt, dx, and
dy, the programming issues involved in implementing it are similar to those arising
from more advanced methods.

Our Fortran-Linda implementation makes use of a single master process and a
number of identical worker processes. The master process handles overall setup
and process management, invokes the workers, and participates in the computa-
tion by handling one of the mesh subdomains. Each worker process is responsible
for a single subdomain, cooperating with other processes to exchange data along
subdomain boundaries. For convenience in presentation, we have omitted most of
the variable declarations and some of the less important code. We assume that
variables whose names are entirely in capital letters (e.g. NXMAX) are specified in
Fortran PARAMETER statements.

The master process fragment (Fig. 3(a)) begins by placing some global
common-block data into tuple space for access by all processes using the state-
ment:

out('parms common', /parms/)

Notice that Fortran-Linda permits the use of a common-block name to refer to
the entire common block in Linda operations, essentially viewing the common
block as a special datatype. This sort of syntax extension is possible with a
language-level tool like Linda, but is impossible in systems based only on the use of
communication libraries.

Next, the master creates the worker processes using Linda's eva t operation.
The arguments of the eva t operation in this case include a reference to the
w o r k e r subroutine, with arguments, thus causing the workers to begin execution at

642 N.J. Carriero et al. /Parallel Computing 20 (1994) 633-655

the start of that subroutine. It is significant here that there is no artificial 'process
id' required to set up the worker processes - each of the workers determines what
it does and how it interacts with other processes based solely on the four
arguments specifying the boundaries of its subdomain. In most message-passing
systems, each process has some sort of id or handle, and it is essential that each
worker know the ids of each neighboring process.

The Linda approach here has an important advantage in that the master can
assign subdomains to the workers in any way it chooses, so long as the corners of
adjacent subdomains match up properly. There is no requirement that regular
subdivision be used, or that each worker even be able to identify its neighboring
processes; each worker only needs to be able to describe the data it needs from

®

c

c

c

c
c
c

subroutine real_main()

common /parms/ cflx, cfly, nts

dimension u(NXMAX,NYMAX)

; (compute initial data, determine nxloc, nyloc, dr, dx, dy, nts, etc.)

set up compute processes

cflx = dt / dx**2
cfly = dt / dy**2
out('parms common', /parms/)
np= 0
do ix = i, nx, nxloc

ixmin = ix
ixmax = min(ix + nxloc - i, nx)
do iy = i, ny, nyloc

iymin = iy
iymax = min(iy + nyloc - i, ny)
np= np+ 1
if (ixmax.lt.nx .or. iymax.lt.ny) then

eval('worker', worker(ixmin, ixmax, iymin, iymax))
endif
out('initial data', ixmin, iymin, u(ixmin:ixmax, iymin:iymax))

enddo
enddo

do computation locally as well

call worker(ixmin, ixmax, iymin, iymax)

collect results

do i=l,np
in('result id', ?ixmin, ?ixmax, ?iymin, ?iymax)
in('result', ixmin, iymin, ?u(ixmin:ixmax, iymin:iymax))

enddo

return
end

Fig. 3(a). Linda program fragment (master routine).

N.Z Carriero et al. / Parallel Computing 20 (1994) 633-655 643

®
subroutine worker(ixmin, ixmax, iymin, iymax)
common /parms/ cflx, cfly, nts
dimension uloc(NXLOCAL+2, NYLOCAL+2, 2)

c
nxloc = ixmax - ixmin + 1
nyloc = iymax - iymin + 1

c
rd('parms common', ?/parms/)
in('initial data', ixmin, iymin, ?uloe(2:nxloc+l, 2:nyloe+l, I))

c
... Set edges of uloc to boundary values as appropriate

c
iz = 1
do it = i, nts

call step(ixmin, ixmax, iymin, iymax, NXLOCAL+2, nxloc, nyloc,
1 iz, uloc(l, I, iz), uloc(l, i, 3-iz))

iz = 3 - iz
enddo

c
out('result id', ixmin, ixmax, iymin, iymax)
out('result', ixmin, iymin, uloc(2:nxloc+l, 2:nyloc+l, iz))

c
return
end

subroutine step(ixmin, ixmax, iymin, iymax, nrows, nxloc, nyloc,
1 iz, ul, u2)

c
common /parms/ cflx, cfly, nts
dimension ul(nrows, *), u2(nrows, *)

c
c exchange boundary data
c

if (i~in.ne.l) out('west', iz, ixmin, iymin, ul(2, 2:nyloc+l))
if (ixmax.ne.nx) out('east', iz, ixmax, iymin, ul(nxloc+l, 2:nyloc+l)
if (iymax.ne.ny) out('north', iz, ixmin, iymax, ul(2:nxloc+l, nyloc+l))
if (iymin.ne.l) out('south', iz, ixmin, iymin, ul(2:nxloc+l, 2))
if (ixmin.ne.l) in('east', iz, ixmin-l, iymin, ?ul(l, 2:nyloc+]))
if (ixmax.ne.nx) in('west', iz, ixmax+l, iymin, ?ul(nxloc+2, 2:nyloc+l))
if (iymin.ne.l) in('north', iz, ixmin, iymin-l, ?ul(2:nxloc+l, I))
if (iymax.ne.ny) in('south', iz, ixmin, iymax+l, ?ul(2:nxloc+l, nyloc+2))

c
c update solution
c

do ix = 2, nxloc + 1
do iy = 2, nyloc + 1

u2(ix, iy) = ul(ix, iy) +
1 cflx * (ul(ix+l, iy) + ul(ix-l, iy) - 2.*ul(ix, iy)) +
2 cfly * (ul(ix, iy+l) + ul(ix, iy-l) - 2.*ul(ix, iy))

enddo
enddo

c
return
end

Fig. 3(b). Linda program ~agment (worker routines).

neighboring subdomains. In most message-passing systems, a more complicated
approach must be taken (unless the system has special library calls applicable to
exactly this sort of mesh problem). For example, the master might tell each worker

644 N.J. Carriero et al. ~Parallel Computing 20 (1994) 633-655

who its neighbors are (by sending the process ids after all processes are created).
Alternatively, each worker might compute the logical process numbers of its
neighbors (based on a regular subdivision of the mesh), and then use some sort of
mapping function to find out the process ids. In either case, the programmer would
have to deal with details of the parallel system having nothing whatever to do with
the application.

One other more subtle point in the process creation loop bears comment. The
Linda operation that sets up each process also passes arguments to the subpro-
gram executed by that process, just as if the subprogram were invoked in an
ordinary manner by a local calling routine. This can reduce the need for explicit
data communication, of course, but it also means that the worker routine invoked
remotely by means of e v a t can be identical to the worker routine invoked locally
by the master. (In fact, it can exist in the same file as the master routine.) In
message-passing systems, like PVM for example, the process creation mechanism
actually invokes an entirely separate worker p r o g r a m , complete with some sort of
main routine. This can make it more difficult to share code, and there will almost
certainly be some code redundancy due to infrastructure repeated in the two
programs.

Following the creation of each worker, the master outs the initial data for that
worker's subdomain. Once again, we see repeated the theme of problem-related,
not system-related, data identification. In this case, the initial data is identified not
by the id of the receiving process, but by the indices of the mesh point at the lower
left corner of the subdomain. Apart from the naturalness of this sort of data
identification, there is the additional advantage that the data is 'self-describing' in
a way that enables a programmer to identify the data in the context of the problem
merely by examining it (possibly using Tuplescope TM, SCIENTIFIC's visual debug-
ger for Linda), without having to unpack and decipher it.

Moreover, the handling of the initial data illustrates two other ways in which the
fact that Linda is based on language-level processing pays off with enhanced
expressiveness and conciseness. First, there is no need to gather into a single
contiguous space the diverse data to be placed in tuple space; Linda handles this
automatically by generating suitable copying routines at compile and link times,
based on the use of the most efficient, machine-dependent, copy operations
available and targeting suitable machine-independent data formats (like XDR) if
appropriate. This leads to a significant reduction in code size, means that the
programmer is freed from the need to allocate and manage temporary space used
solely for message buffers, and facilitates software portability.

The o u t operation for the initial data also illustrates another Fortran-Linda
extension of basic Fortran 77 syntax: the ability to use Fortran 90 array index
syntax inside of Linda operations. This permits very concise specification of a
scattered subarray of the initial data matrix in a way that is impossible with
library-based tools.

After it has created all the workers, the master process itself calls the worker
subroutine to carry out computations on the upper-rightmost subdomain. When all
computation is complete, the master collects the results in a loop over all the

N.J. Carriero et al. / Parallel Computing 20 (1994) 633-655 645

subdomains. Notice that the collection loop can accept the results in random
order, rather than by process number or in some specific subdomain order.

We now turn to the worker process illustrated in Fig. 3(b). The basic design for
the worker process involves the use of two scratch arrays alternately to contain the
old and new solution values. The first order of business for each worker is to copy
the common block data and the initial solution data from tuple space. In this case,
a r d operation is used for the common block, since the same tuple must be
consulted by all workers. An i n operation is used to retrieve the initial data and
place it into one of the scratch arrays.

Following some initialization for those workers on the boundaries of the global
mesh, each worker enters a loop over the number of timesteps to be computed.
That loop invokes the computational routine, s t e p, alternating the roles of the two
scratch arrays as input and output arrays.

The s t e p routine is quite simple, comprising a data exchange (communication)
section and a local computation section. The data exchange section uses Linda o u t
and in operations to place boundary data in tuple space and to retrieve the
boundary data from neighboring subdomains. Notice once again that the data is
self-describing, using index parameters natural in the context of the application.
This contrasts with the need in message-passing systems to package each piece of
the subdomain boundary into a message targeted for a specific processor. The
computation section is, of course, quite straightforward, since it is identical to what
would be included in any program for this application.

We haven't included here a message-passing variant of our program fragment.
However, message-passing implementations by others of similar methods (e.g. [17])
are more complicated and require more lines of code to deal with parallel issues
irrelevant to the underlying sequential computation. More importantly, the mes-
sage-passing implementations tend to be less natural, in the sense that they make
substantial explicit use of system/archi tecture information (such as process ids and
the like) in addition to problem-specific information. Together these observations
lead one to expect that the most frequent route to a parallel program - paralleliza-
tion of an existing sequential program - should be much simpler with Linda than
with message passing. This, in turn, should lead to significant cost savings due to
reduced development time and increased software portability and reliability.

In comparing Linda and message-passing systems, we need to keep sight of the
fact that these systems have radically different designs and goals. Message-passing
systems like PVM have successfully achieved a specific, pragmatic goal: support for
a well-desigued, portable message passing service. Linda, on the other hand, is
designed to play a more ambitious role - that of a high-level coordination
language that is at the same time general, portable and efficient. Thus, within the
parallel-programming domain, Linda is designed to support all of the basic
paradigms of asynchronous parallelism, whereas message passing systems are
well-suited to only some. In addition to programs of the type discussed in this
section, Linda (as a language) supports many others, including those that rely
heavily on distributed data structures (stored in tuple space), or that emerge from
a result-driven dataflow paradigm. In practice, of course, physical communication

646 N.J. Carriero et al. /Parallel Computing 20 (1994) 633-655

and process management may be too expensive on many current platforms or
networks to fully exploit this expressiveness, but the capability is, important
because it means that Linda can serve as a unifying environment for today's
parallel applications and the ones that will be available in the future within
highly-optimized environments providing cheap communication and process man-
agement (cf. [20]).

3.3 Implementation efficiency

Linda is available on a wide range of parallel machines, including shared-mem-
ory multiprocessors, distributed-memory parallel computers, and heterogeneous
collections of networked workstations. Each Linda implementation involves three
basic components: a language-dependent precompiler, a link-time optimizer, and a
machine-dependent run-time library, which fit together to provide efficiency in
each of these environments.

As we noted earlier, the precompiler processes C-Linda or Fortran-Linda
source code to produce pure C or Fortran modules in which the tuple space
operations are replaced by calls to functions which will, in turn, invoke routines in
the run-time library. (These intermediate functions are generated automatically
during optimization at pre-link time.) The pure C or Fortran modules are then
compiled using native compilers. In the course of this processing, the precompiler
collects information about tuple space usage which is saved in a 'Linda object file'
along with the base language (C or Fortran) object code.

At link-time, the Linda prelinker analyzes all the tuple-space accesses used in
the complete program and 'fills in' the bodies of the intermediate functions
mentioned above. In essence, these functions are quite simple: they create and fill
suitable data structures for the tuple data and invoke an appropriate pre-existing
library routine. Once the intermediate functions have been compiled by the Linda
system using native compilers, the standard system linker is used to produce the
final executable.

The prelinker is the real key to achieving run-time efficiency with Linda. One of
its roles is to select the proper run-time library routines for the implementations of
the tuple space operations. In SCIENTIFIC's systems, the run-time library is
actually implemented as a polylibrary - that is, as a collection of families of
run-time routines which can be used to implement different kinds of tuple space
operations. While the Linda associative-matching protocol is very general, link-time
analysis of data collected at compile time makes it possible to select the most
appropriate member of the family applicable to each operation, thereby maximiz-
ing run-time efficiency while maintaining exactly the minimal required amount of
generality.

In addition, the prelinker can use its complete knowledge of every tuple space
access in the program to accomplish a good deal of 'proto-matching' at link time.
A significant reduction in the cost of run-time searching can be achieved merely by
exploiting the simple observation that an n-field template with a given type
signature can only match an n-field tuple with matching types. However, it is

N.J. Carriero et aL / Parallel Computing 20 (1994) 633-655 647

possible to do even more, for example, by throwing out consistently-used constant
fields (in other words, 'pre-matching' them), establishing whether or not run-time
value matching is needed and, if it is, determining whether there is a search key
(for a hash table, for example). For more details, see [12].

The goal of the compile- and link-time processing of a Linda program is to
convert a program containing very general Linda statements into an executable
that will run as efficiently as if the program had been written with much less
general process interaction constructs. In the case of programs designed for a
message-passing process-interaction model (such as the example from the last
section), this means that the resulting Linda program should run as fast (or nearly
so) as a well-written 'natural ' message-passing program. In addition to the opti-
mizations already discussed, key to this efficiency are the run-time library routines.

Linda run-time libraries are targeted to specific host platforms. On shared-
memory multiprocessors, tuple space is (naturally) mapped to physically-shared
memory, and library routines use efficient shared-memory operations. In this
paper, we want to focus mainly on Linda's use on distributed-memory machines
and workstation networks, since those are the principal domains in which message
passing is used. While several techniques have been used to implement tuple
spaces in such environments, the most successful were developed by Bjornson and
are described in [1].

In all distributed-memory Linda implementations, each processor acts both as a
computational server (computing fields from eva LS) and as a tuple space server,
responsible for managing a particular disjoint section of tuple space. This dis-
tributes both the computational load and the burden of handling Linda operations
across all participating processors, and it allows tuple space to be accessed
simultaneously by many processes. As described above, the compile- and link-time
systems divide tuples and templates into classes based on the number of fields, the
type signature, etc. At run time, each class is mapped to some participating
processing node, which provides storage for all tuples and templates in that class -
in principle, each tuple or template is sent, upon generation, to the node associ-
ated with its class, and that node serves as a rendezvous point. Tuples wait there
for matching templates, and vice versa. When a match occurs, the matched tuple is
bundled off to the template's node of origin, and in that way a tuple generated by
an o u t is delivered to a process that has executed a matching i n or r d.

This basic scheme leads to the use of a three-message protocol for data
movement at run-time, as shown in Fig. 4. When an o u t occurs, the computed
tuple is sent to the responsible rendezvous node (Fig. 4(a)). For an i n or r d, the
node performing the operation sends the template to the rendezvous node and
blocks awaiting a response. The rendezvous node sends the matched tuple back as
soon as one is available (Fig. 4(b)).

A number of optimizations are used to make this basic scheme work well. First,
some classes (those implemented as hash tables, for which there are search keys)
may themselves be distributed over several nodes. Second, some tuple fields (in
particular any large ones that play no role in tuple matching) aren't sent to the
rendezvous node, but remain on their nodes of origin until needed by a recipient

648 N.J. Carriero et aL / Parallel Computing 20 (1994) 633-655

Linda Process

Rendezvous Node

(a) out for a small tuple

Linda Process

2. T u p ! e ~ ~ c ~)

Rendezvous Node

(b) i n for a small tuple

Linda Process Linda Process

3. Request lo send W ~N3"tapledataa~e r
/ oU~(Z) \ \~'uccessfulmatch /2 ~1(~1

Rendezvous Node

(e) our.- in pair for a large tuple

Fig. 4. Tuple processing in distr ibuted-memory Linda implementations.

process (see Fig. 4(c)); this often substantially improves performance, since the
large fields frequently consume most of the actual communication time. Third,
broadcast operations may be used automatically by the run-time system to pre-dis-
tribute tuples accessed by r d operations (on the assumption that many nodes will
access such tuples). Finally, the class-to-rendezvous-node mapping may change
dynamically at run-time in response to observed tuple traffic. For example, if one
process consistently requests tuples from a given class (or subclass, in the case of
classes implemented using hash tables), the rendezvous node for that class is
reassigned to the recipient process's node. This last optimization has an important
consequence: Linda applications that behave like message-passing programs at
run-time - those which involve very stable and predictable communication pat-
terns - will perform like message-passing programs at run-time.

To conclude this discussion, we return briefly to the Fortran-Linda application
of the last section. The real key to achieving high performance for that program is
to make certain that the exchange of boundary data performs exactly like the
message sending and receiving that it really is. Compile- and link-time analysis will
lead Linda to use a distributed hash table implemention for the tuple classes used
in the out and i n operations of step. The hash keys will be derived from
combinations of the non-constant fields that have actual values in both tuples and
templates; in the cases at hand, these are the integer indices that are the second
through fourth fields. At run time, the hash-table bins will be distributed initially
at random, leading to a three-message communication protocol similar to that
shown in Fig. 4. This is clearly less efficient than pure message passing, which

N.J. Carriero et al. / Parallel Computing 20 (1994) 633-655 649

would involve only a single message. However, very rapidly (after three repetitions
in current implementations), the run-time system will observe a static traffic
pattern (since each hash key instance corresponds to data intended for a unique
subdomain and, therefore, node). When this happens, those hash keys are removed
from the standard hash table processing, and the corresponding rendezvous node
is forced to the destination node. This leads to a single-message protocol. The
dominant cost of satisfying the in requests then becomes the local memory-to-
memory copy operations required to place the data into the proper output
locations. This cost should be no worse for Linda than for message-passing systems
(which must unpack the message buffers).

3.4 Performance results

We turn now to some performance evaluation of Linda, and a comparison
between it and various message-passing systems. We emphasize that, although we
provide quantitative results, one should draw only qualitative conclusions, since all
of the systems discussed are undergoing constant improvement, and actual timings
may depend somewhat on local hardware or software system configuration issues.
Moreover, as we noted earlier, the Linda performance results described here
represent only the performance of SCIENTIFIC's commercial Linda systems;
other Linda-like systems may not use similar optimizations, so their performance
may differ substantially.

In an absolute sense, Linda performance really depends on two separate issues:
the effectiveness of the tuple classification strategies in reducing or eliminating
expensive searches in tuple space, and the efficiency of the machine-dependent
implementations of data transfer. We focus here mainly on the latter issue, though
we note that Bjornson [1] has performed extensive studies quantifying the amount
of searching. He concluded that over a number of different applications and
problem sizes, Linda's compile- and link-time analysis and optimization were so
effective that the cost of 'searching' was insignificant - in most cases, in fact, the
first tuple examined (as a candidate match for a template) was the correct one.
That tells us that, at least for SCIENTIFIC's systems, the quality of Linda
performance will depend primarily on the degree to which the run-time system can
avoid extra messages (relative to message-passing systems) and exploit the underly-
ing low-level communication system.

To begin we will address performance on networks, comparing SCIENTIFIC's
Network Linda System to PVM, a high-quality representative of portable
message-passing systems. For a variety of reasons, including the issue of system
evolution mentioned above, it is particularly difficult to assess quantitatively the
relative performance of these two systems. For example, there are a number of
algorithms (such as those involving dynamic load balancing, to name one class) that
are easy to implement efficiently in Linda, but that may be difficult to implement
in PVM. Moreover, PVM itself incorporates at least two different message-passing
implementations (pvm_send I pvm_recv, pvm_vsndlpvm_vrcv) that have differ-
ing performance characteristics, and it is unclear which one to use for fair
comparisons.

650 N.J. Carriero et al./Parallel Computing 20 (1994) 633-655

Table 1
PVM/Linda communication time comparisons (ping-pong test)

Message size PVM time Network Linda time
(bytes) (msec) (msec)

100 5.7 7.9
1,000 9.2 10.9

10,000 42.5 53.6
100,000 356.3 389.1

1,000,000 3,479.3 3,711.5

Noting all this, and bearing in mind that our goal here is to understand
performance for algorithms to which Linda and PVM are equally applicable, we
will present only results from two rather limited examples. Our comparisons used
Version 2.5 of the Network Linda System and Version 2.4.0 and 2.4.1 of PVM,
since those are the most widely distributed at the time of this writing. Somewhat
newer versions now available might offer some quantitative improvements, but the
qualitative conclusions would most likely stay the same. 3

Our first example is a two-node 'ping-pong' program designed to study commu-
nication costs in Linda and PVM on a dedicated ethernet network. The ping-pong
program contains two processes which pass a single message ' token' back and forth
100 times (that is, there are 200 actual messages). The fact that only two nodes are
involved potentially hides significant issues related to scalability - for example, the
program uses the p v m_v s n d [p v m_v r c v operations in PVM which may not scale to
large networks due to Unix limitations on socket usage. However, the results do
provide an indication of the underlying communication overheads in the two
systems, independent of such hard-to-predict issues as network contention and the
like. (We should note that the more scalable pvm_sendlPvm_recv paradigm in
PVM suffered a factor of two pe r fo rmance degrada t ion over the
pvm_vsnd [pvm_vrcv paradigm.)

The results in Table 1, originally reported by Douglas, Mattson, and Schultz
[18], show the average time in milliseconds for a single roundtrip as a function of
message size. They were obtained using Sun SPARCstation 1 workstations on an
isolated ethernet network. The programs were written in C using version 2.5 of the
Network Linda System and version 2.4.1 of PVM. In a sense, these numbers
represent a worst case for the two systems, since there is no computation to dilute
any of the communication cost. (Real programs that make sense to run on
networks typically spend only a small amount of time communicating, so even a
large increase in the pure communication time represents only a small portion of
total wallclock execution time.) However, the results shown in Table 1 show that
the Linda and PVM times are within 10-20% in most cases. 4

3 The current version of the Network Linda System is Version 2.5.2, and the current version of PVM is
Version 3.1. Dr. A. Geist (private communication) has indicated that performance in the new version of
PVM should be comparable to that reported here.

N.J. Carriero et aL / Parallel Computing 20 (1994) 633-655

Table 2
PVM/Linda wallclock time comparisons (Cap & Strumpen data)

651

Number of PVM wallclock Linda wallclock
processors time (sec) time (sec)

1 1,370.6 1,370.6
2 648.0 662.2
4 328.0 342.6
8 168.4 175.8

16 90.0 92.8
32 54.0 54.0
38 54.0 51.3

A more useful compar i son be tween L inda and P V M on networks can be
ob ta ined by looking at the total wallclock execut ion t ime of specific applicat ions.
The par t icular appl icat ion we' l l examine is the solut ion of a heat conduc t ion
equa t ion on a two-dimens ional grid using str ip-based domain decomposi t ion - a
computa t ion similar to our earl ier t i le-based example, bu t using a somewhat
s impler set of subdomains . Since the results represen t work done by others, we will
not focus on the details, bu t will ins tead p resen t compar isons that indicate the

roughly-equal pe r fo rmance of Linda and PVM. Tha t is, after all, exactly what one
would hope for - a high-level pa rad igm (Linda) per forming to the same s tandard
as a we l l - implemented message-pass ing system (PVM). The p rogram was wri t ten
by Cap and S t r u m p e n [10], f rom whom we have ob ta ined the data repor ted in
Table 2. The i r algori thmic approach was based on a data paral lel scheme des igned
specifically to cater to some degree of he te rogene i ty in the ne tworked workstat ions
(in their case a mixture of various Sun SPARCsta t ions) . The repor ted results are
wallclock t imes using C with PVM 2.4.0 and Network C-Linda vers ion 2.5.0. 5 We

see that the combina t ion of L inda opt imizat ions descr ibed above (part icularly the
run- t ime reass ignment of rendezvous nodes) is capable of achieving Linda perfor-
mance comparab le to that of message passing systems.

The Cap and S t rumpen example is not un ique in the P D E area. Compara t ive
results for the Shallow Wate r Equa t ions (also using str ip-based decomposi t ion)

4 For small message sizes, the difference seems to be due to some data management overhead and, to a
lesser extent, Linda's need to send a few extra messages involving the rendezvous node. For large
message sizes, the difference appears related to Linda's use of UDP and PVM's use of TCP. We note,
however, that Douglas, Mattson, and Schultz [18] report that PVM performance deteriorates badly for
large message sizes in other tests run on a four-node network.
5 The times for 1-16 processors were obtained on a homogeneous SPARCstation 1 network. The
32-processor network included 23 SPARCstation 1 workstations, 8 SPARCstation 1 + workstations and
one SPARCstation 2. The 38-processor network added 3 additional SPARCstation 2 workstations, two
SPARCserver 490s, and a SPARCserver 390. Cap and Strumpen also compared PVM and Linda to
their own special-purpose system PARFORM. Essentially, all three showed equal performance (within
approximately 5%). The results using SCIENTIFIC's Network Linda System were obtained with the
assistance of Mr. David Kaminsky and his colleagues at Yale University.

652 N.J. Carriero et al. / Parallel Computing 20 (1994) 633-655

Table 3
EUI/Linda SP1 wallclock time comparisons (single token ring tests for 10 processors)

Token size Linda results EUI results

(bytes) Time (msec) Throughput (Mb) Time (msec) Throughput (Mb)

1 1.58 0.00063 0.31 0.0032
4096 2.48 1.65 1.28 3.21
8192 3.51 2.34 1.92 4.28

16384 5.57 2.94 3.13 5.23
65536 14.69 4.46 10.18 6.44

262144 46.11 5.69 39.05 6.71
1048576 172.35 6.08 149.33 7.02

have been reported by Deshpande and Schultz [17], and they, too, found roughly
similar performance for Linda and PVM versions on local area networks.

We and others have also looked at Linda performance on more scalable
architectures, and we examine here some communication tests from recent work
on the IBM 9076 SP1 computer, a new distributed memory machine that includes
a scalable communication switch. SCIENTIFIC has developed a machine-specific
version of Linda for the SP1 that is specifically designed to achieve high through-
put for large tuples, and We report some preliminary results for two ring-communi-
cation programs in Tables 3 and 4. In the first program, a single tuple of varying
size is passed around a logical ring of p processors; while, in the second, p such
tokens are passed around a p-processor ring. The Linda version, using Linda's o u t
and i n operations, was compared against a version using IBM's native EUI
message-passing commands. Both versions were run on an SP1 under IBM's POE
(Parallel Operating Environment) system. In each case, the tables report both the
time (in milliseconds) per single token transfer (including both o u t and in for
Linda) and the corresponding throughput (in megabytes per second). Note that in
the multi-token test, the aggregate throughput is p times the reported number.

The SP1 results indicate that Linda performance is qualitatively similar to that
of IBM's native message-passing environment, particularly insofar as throughput
for reasonably large data sizes is concerned. (For many real applications, for

Table 4
EUI/Linda SP1 wallclock time comparisons (multi-token ring tests for 10 processors)

Token size Linda results EUI results

(bytes) Time (msec) Throughput (Mb) Time (msec) Throughput (Mb)

1 2.43 0.00041 1.22 0.00082
4096 6.00 0.68 7.41 0.55
8192 8.88 0.92 8.24 0.99

16384 14.54 1.13 12.84 1.28
65536 34.95 1.88 32.98 1.99

262144 104.08 2.52 115.43 2.27
1048576 396.64 2.64 454.66 2.31

N.J. Carriero et al. / Parallel Computing 20 (1994) 633-655

Table 5
Hypercube native/Linda wallclock time comparisons (Deshpande and Schultz data)

653

Number of
processors

iPSC/2 wallclock times (sec) iPSC/860 wallclock times (sec)

Linda NX/2 Linda NX/860

4 - 280.1 276.2
8 864.6 857.1 144.2 141.1

16 437.2 432.0 69.1 66.9
32 227.4 222.9 37.2 35.0
64 116.7 112.8 19.8 17.7

example, in fields like seismic processing, typical data sizes are in excess of a
megabyte, so small-data-size latency is relatively unimportant.) We note that
Linda's latency for small data sizes is significantly larger than that with EUI, due
to the particular design of the current Linda system on the SP1. Further research
and development, now under way, is expected to reduce the latency difference.

Turning finally to application performance on distributed memory machines, we
will look at two sets of results. First, the work of Deshpande and Schultz discussed
above also examined performance for the Shallow Water Equations in other
settings, including the use of tile-based decompositions on distributed memory
machines from Intel. It is interesting to note that they observed that Linda
achieved better than 90% of message-passing performance (using native Intel
message-passing libraries), even though a relatively small problem was used (a
512 x 512 grid on up to 64 processors). Their results for 200 time steps on a
512 x 512 grid are summarized in Table 5.

Our last performance results are for two-dimensional FFTs on the Intel ma-
chines, and are based on work reported by Segall [26]. Segall developed codes
using both C-Linda and native Intel message-passing libraries, and studied the
question of what percent of native-code performance was achieved by the Linda
codes. He found that the C-Linda version 'asymptotically approached the perfor-
mance of the [optimized native] version as the matrix dimension [problem size]
increased. It came to within a few percent for matrix sizes that are commonly
encountered in practice.' Segall went on to note that the ratio of computation
speed to communication speed made Linda performance relatively better on the
iPSC/2 than on the iPSC/860, but Linda performance was well above 90% of
native (optimized) message-passing performance for matrices of size 1024, even on
64 processors of the iPSC/860.

4. Concluding remarks

In this paper we have discussed the Linda model for parallel computing and
compared it to message-passing models, both qualitatively and quantitatively. What
we have seen is that Linda is a higher-level, more expressive and general approach,
and that it is able to achieve run-time performance that is quite similar to that of

654 N.J. Carriero et al. / Parallel Computing 20 (1994) 633-655

message passing. It is also significant that the Linda model has been very success-
ful for real computations. While we do not have space here to provide details, we
can say that Linda systems have been used widely for a diverse set of applications
(cf. [3,11]), specifically including, for example, financial analytics [8,9,23], petroleum
applications [5,6,27,28], electronic device design [7], and ray tracing [4,22]. In the
near future, we expect to see the release of commercial-quality applications in
these fields and others like computational chemistry and electronic chip design.

As important as current performance and usage may be, we think it is at least as
important to focus on the future. For Linda it is clear that the future will include
support for highly adaptive network computation in which processors enter and
leave computations dynamically based on individual priority scheduling and for the
development of hierarchical, heterogeneous systems (involving tuple spaces shared
between independent parallel applications, for example). Already SCIENTIFIC's
released Network Linda System supports the 'piranha model' in which programs
make use of an adaptive master-worker paradigm for parallel computing (cf.
[13,19,21]) that responds dynamically to workstation availability constraints. Under
development is support for 'open tuple spaces' ([16]) that can be shared among
different programs. Open tuple spaces will be used to build coherent applications
on very heterogeneous mixtures of machines (hypercubes and workstations, or
different SIMD machines, for instance) and for machines which are themselves
heterogeneous (the Convex META, for example). They will also support multidis-
ciplinary applications (such as combinations of PDE solvers with visualization
programs) by providing a persistent shared memory resource (much like a file
system, but with Linda semantics and much higher performance).

5. References

[1] R. Bjornson, Linda on distributed memory multiprocessors, Ph.D. Dissertation, Department of
Computer Science, Yale University, 1993.

[2] R. Bjornson, N. Carriero and D. Gelernter, The implementation and performance of hypercube
Linda, Research Report, Department of Computer Science, Yale University, 1989.

[3] R. Bjornson, N. Carriero, D. Gelernter, D. Kaminsky, T. Mattson and A. Sherman, Experience
with Linda, Research Report, Department of Computer Science, Yale University, August, 1991.

[4] R. Bjornson, C. Kolb and A. Sherman, Ray tracing with network Linda, SIAMNews (1991).
[5] J.L. Black and C.B. Su, Networked parallel seismic computing. Paper Number OTC 6825, 24th

Annual Offshore Technology Conf. Houston, TX (1992) 169-176.
[6] J.L. Black, C.B. Su and W.S. Bauske, Networked parallel 3-D depth migration, SEG 61st Annual

Internat. Meeting and Exposition, Houston, TX (1991) 353-356.
[7] L. Cagan and A. Sherman, Linda on networks, IEEE Spectrum (1993).
[8] L.D. Cagan, How to make the most of financial codes: Investment analytics on networked

workstations, High Performance Comput. Reu. 1(5) (May/June, 1993) 16-24.
[9] L.D. Cagan, N. Carriero and S. Zenios, Pricing mortgage-backed securities with network Linda,

Financial Analysts J.: to appear (1993).
[10] C. Cap and V. Strumpen, Efficient data parallel computing in distributed workstation environ-

ments, Institut fur Informatik, University of Zurich, Zurich, Switzerland, January 1993.
[11] N. Carriero and D. Gelernter, Applications experience with Linda, Proc. ACM Syrup. Parallel

Programming (1988).

N.J. Carriero et al. / Parallel Computing 20 (1994) 633-655 655

[12] N. Carriero and D. Gelernter, A foundation for advanced compile time analysis of Linda
programs. In: Languages and Compilers for Parallel Computing, U. Banerjee, et al., eds. (Springer,
Berlin, 1992) 389-404.

[13] N. Carriero and D. Gelernter, How to Write Parallel Programs: A First Course. (MIT Press,
Cambridge, MA, 1990).

[14] N. Carriero and D. Gelernter, Linda and message passing: what have we learned, Research
Report, Department of Computer Science, Yale University, August 1993.

[15] N. Carriero and D. Gelernter, Linda in context, Comm. ACM 32(4) (1989) 444-458.
[16] N. Carriero, D. Gelernter and T.G. Mattson, Linda for heterogeneous networks, Proc. First

Annual Workshop on Heterogeneous Processing (1992).
[17] A. Deshpande and M.H. Schultz, Efficient parallel programming with Linda, Supercomputing '92,

Minneapolis, MN (1992) 238-244.
[18] C.C. Douglas, T.G. Mattson and M.H. Schultz, Parallel programming systems for workstation

clusters, Research Report YALEU/DCS/TR-975, Yale University, Department of Computer
Science, August 1993.

[19] D. Gelernter and D. Kaminsky, Supercomputing out of recycled garbage: Preliminary experience
with Piranha, Sixth ACM Internat. Conf. on Supercomputing, Washington, DC (1992).

[20] S. Jagannathan, Optimizing analysis for first-class tuple spaces, Languages and Compilers for
Parallel Computing II (1991).

[21] D. Kaminsky, The Piranha system for network computing. Research Report, Dept. of Computer
Science, Yale University, 1991.

[22] F.K. Musgrave and B.B. Mandelbrot, The art of fractal landscapes, IBM J. Res. Develop. 35(4)
(July, 1991) 535-540.

[23] I. Nelken and R. Bjornson, Fast Lady: Financial software must produce results quickly to keep up
with the market, RISK (April 1992).

[24] Scientific Computing Associates Inc., C-Linda User's Guide & Reference Manual (New Haven, CT,
1993).

[25] Scientific Computing Associates Inc., Fortran-Linda Reference Manual (New Haven, CT, 1992).
[26] E.J. Segall, Tuple space operations: Multiple-key search, on-line matching, and wait-free synchro-

nization. Ph.D., Rutgers University, 1993.
[27] A.H. Sherman, A hybrid approach to parallel compositional reservoir simulation. Paper Number

OTC 6829, 24th Annual Offshore Technology Conf. Houston, TX (1992) 191-198.
[28] A.H. Sherman, Parallel petroleum software on workstation clusters. Supercomputing Europe '93,

Utrecht, The Netherlands (1993).

