Google DeepMind Efficient Graph Field Integrators Meet Point Clouds

Krzysztof Choromanski*, Arijit Sehanobish*, Han Lin*, Yunfan Zhao*, Eli Berger, Tetiana Parshakova, Qingkai Pan, David Watkins, Tianyi Zhang, Valerii Likhosherstov, Somnath Basu Roy Chowdhury, Kumar Avinava Dubey, Deepali Jain, Tamas Sarlos, Snigdha Chaturvedi, Adrian Weller

Problem formulation Compute efficiently (in sub-quadratic time in the number of nodes N of the graph) the following expressions for every node v of the given graph G: $i(v) := \sum \mathrm{K}(w, v) \mathcal{F}(w)$ $w \in V$ tensor field defined on the graph similarity between two nodes integration (e.g. a function of the shortest-path over all the nodes distance between them) Graph as a discretization of the 2-dim manifold:

SeparatorFactorization (SF)

- works with input mesh-graphs
- leverages their low-genus structure (\rightarrow small-size separators)
- applies our new results in structural graph theory on fast graph field integration via separator-based divide-and-conquer methods and Fast Fourier Transform
- $O(N \log^2(N))$ time complexity, for K governed by the exp map of the shortest-path distance: $O(N \log^{1.383}(N))$

RFDiffusion (RFD)

- works with point cloud (no mesh needed)
- leverages the implicit graph structure given by the following adjacency matrix: $W_G(i,j) = f(n_i - n_j)$
- linearizes the adjacency matrix via Fourier-Transform based random feature map mechanism
- O(N) time complexity, but for a specific class of graph diffusion kernels, leveraging our novel decomposition of the exponentials of low-rank matrices:

$$\begin{split} \exp(\boldsymbol{\Lambda} \cdot \overline{\mathbf{A}\mathbf{B}^{\top}}) &= \sum_{i=0}^{\infty} \frac{1}{i!} (\boldsymbol{\Lambda}\mathbf{A}\mathbf{B}^{\top})^{i} \\ \text{low-rank} &= \mathbf{I} + \sum_{i=0}^{\infty} \frac{1}{(i+1)!} \mathbf{A} (\boldsymbol{\Lambda}\mathbf{B}^{\top}\mathbf{A})^{i+1} \mathbf{A}^{-1} \\ \text{of } \mathbf{W} \text{ via random} &= \mathbf{I} + \mathbf{A} [\exp(\boldsymbol{\Lambda}\mathbf{B}^{\top}\mathbf{A}) - \mathbf{I}] (\mathbf{B}^{\top}\mathbf{A})^{-1} \mathbf{B}^{\top} \end{split}$$

Empirical results

- 1. Vertex Normal Prediction
- We predict vertex normals from its masked variants.

 $\mathbf{F}_i = \sum_{j \in \mathbf{V} \setminus \mathbf{V}'} \mathbf{K}(i, j) \mathbf{F}_j$

• Tested on 120 meshes for 3D-printed objects with a wide range of sizes from the Thingi10k dataset.

- 2. Wasserstein Distances and Barycenters
- We study the OT problem of moving masses on a surface mesh.
- Gromov Wasserstein (GW) discrepancy (resp. Fused Gromov Wasserstein discrepancy (FGW)): extension of Wasserstein distances to graph-structured data.

efficient separator used in our SF algorithm is critical for fast integration our **RFD** algorithm leverages graph structure implicitly via eps-neighborhood defined edges a sphinx mesh with 1.7M faces; infeasible for regular integration algorithms

Applications: interpolation on manifolds, topological masking mechanisms for Transformers with structural inputs, physics simulations in curved spaces. Wasserstein barycenter, (Fused) Gromov Wasserstein, ...

* equal contribution

encoding deviations of the shortest-path

distances to the vertices of S from distance to S