

Unsupervised Opinion Summarization Using Approximate Geodesics

Somnath Basu Roy Chowdhury, Nicholas Monath, Avinava Dubey, Amr Ahmed, and Snigdha Chaturvedi

Google Research

Outline

- Motivation
- Problem Setup
- Topical Representations
- Recipe for Summarization
- Representation Learning
- Sentence Selection
- Datasets and Metrics
- Results

Online Reviews

- There has a massive increase in the number of reviews available online ullet
- These are a great resource for both sellers and customers •

Opinion Summarization

• Unsupervised opinion systems are desirable due to the scarcity of labeled data

- Unsupervised opinion systems are desirable due to the scarcity of labeled data
- It is crucial to represent text in a way that they capture the underlying semantics

rable due to the scarcity of labeled data It they capture the underlying semantics

- Unsupervised opinion systems are desirable due to the scarcity of labeled data ullet
- It is crucial to represent text in a way that they capture the underlying semantics •
- One such approach is to have representations as a distribution over latent semantic units •

- Unsupervised opinion systems are desirable due to the scarcity of labeled data ullet
- It is crucial to represent text in a way that they capture the underlying semantics •
- One such approach is to have representations as a distribution over latent semantic units
- Select popular opinions by leveraging such representations

- Unsupervised opinion systems are desirable due to the scarcity of labeled data ullet
- It is crucial to represent text in a way that they capture the underlying semantics
- One such approach is to have representations as a distribution over latent semantic units
- Select popular opinions by leveraging such representations
- We focus on extractive summarization in this work

Outline

- Motivation
- Problem Setup
- Topical Representations
- Recipe for Summarization
- Representation Learning
- Sentence Selection
- Datasets and Metrics
- Results

Problem Setup

- •
- Extract a set of review sentences to form a summary •
- Compare the generated summary with a human-written one •

For an entity (a product — kindle, a hotel — Graduate CH), an opinion set is provided

Outline

- Motivation
- Problem Setup
- Topical Representations
- Recipe for Summarization
- Representation Learning
- Sentence Selection
- Datasets and Metrics
- Results

Distributed Representations

Distributional hypothesis (Firth et al. 1950): "a word is characterized by the company it keeps"

Distributed Representations

Distributional hypothesis (Firth et al. 1950): "a word is characterized by the company it keeps"

Topical Representations

We want to capture the meaning of text as a distribution over semantic units.

Topical Representations

We want to capture the meaning of text as a distribution over semantic units.

bottle of water is on the A

table.

Topical Representations

We want to capture the meaning of text as a distribution over semantic units.

A bottle of water is on the

table.

• It is hard to use off-the-shelf pre-trained distributions for defining similarity measures

- (Timkey et al, 2021) showed that BERT representations are anisotropic in nature

• It is hard to use off-the-shelf pre-trained distributions for defining similarity measures

- It is hard to use off-the-shelf pre-trained distributions for defining similarity measures
- (Timkey et al, 2021) showed that BERT representations are anisotropic in nature
- Few dimensions dominate the similarity scores

- It is hard to use off-the-shelf pre-trained distributions for defining similarity measures
- (Timkey et al, 2021) showed that BERT representations are anisotropic in nature
- Few dimensions dominate the similarity scores
- Hard to achieve compositionality using standard operations (add or mul.)

Why topical representations?

Representations are distributions over the same support

Why topical representations?

- Representations are distributions over the same support
- Allows us to compare representations using cosine similarity

Why topical representations?

- Representations are distributions over the same support
- Allows us to compare representations using cosine similarity
- Retrieve overall semantic distribution using an aggregate (mean) representation

Outline

- Motivation
- Problem Setup
- Topical Representations
- Recipe for Summarization
- Representation Learning
- Sentence Selection
- Datasets and Metrics
- Results

Recipe for Summarization?

Our approach has 2 components:

Recipe for Summarization?

Our approach has 2 components:

- Unsupervised Representation Learning
 - Converts distributed representations \rightarrow topical representations

Recipe for Summarization?

Our approach has 2 components:

- Unsupervised Representation Learning
 - Converts distributed representations \rightarrow topical representations
- Sentence selection algorithm
 - Use topical representations to quantify relevance of a review sentence

Outline

- Motivation
- Problem Setup
- Topical Representations
- Recipe for Summarization
- Representation Learning
- Sentence Selection
- Datasets and Metrics
- Results

representations

• We use dictionary learning to decompose pre-trained representations into topical

- representations
- The dictionary captures latent semantic units

We use dictionary learning to decompose pre-trained representations into topical

- We use dictionary learning to decompose pre-trained representations into topical representations
- The dictionary captures latent semantic units
- The sparse coefficients function as the topical representation

- We use dictionary learning to decompose pre-trained representations into topical representations
- The dictionary captures latent semantic units
- The sparse coefficients function as the topical representation
- We use a sentence reconstruction objective for learning the dictionary

- We use dictionary learning to decompose pre-trained representations into topical representations
- The dictionary captures latent semantic units
- The sparse coefficients function as the topical representation
- We use a sentence reconstruction objective for learning the dictionary
- We design an encoder-decoder architecture to achieve this

Model Sketch

Model Sketch

Model Architecture

• We train our model using a combination of dictionary and cross-entropy loss

- We train our model using a combination of dictionary and cross-entropy loss
- We maintain a separate dictionary at each decoder layer

- We train our model using a combination of dictionary and cross-entropy loss
- We maintain a separate dictionary at each decoder layer
- We obtain a word representation for each decoder layer

- We train our model using a combination of dictionary and cross-entropy loss
- We maintain a separate dictionary at each decoder layer
- We obtain a word representation for each decoder layer
- How do we combine these to form a sentence representation?

Word \rightarrow Sentence Representations

Word \rightarrow Sentence Representations

Outline

- Motivation
- Problem Setup
- Topical Representations
- Recipe for Summarization
- Representation Learning
- Sentence Selection
- Datasets and Metrics
- Results

- We want to select sentences that are representative of popular opinions.
- For an entity e, we have sentence representations $X_{\rho} = \{\mathbf{x}_{\mathbf{S}} \mid s \in S_{\rho}\}$
- A naive approach is to select sentence representations close to the mean of $X_{_{\! o}}$
- Sentence representations lie on a high-dimensional manifold that we need to consider while computing distances

Geodesic distance between two representations \boldsymbol{x}_S and $\boldsymbol{x}_{S'}$

We name our system **Geo**desic **Summ**arizer (GeoSumm)

2: $\mu_e \leftarrow \mathbb{E}_{s \sim S_e}[\mathbf{x}_s]$ 3: $\mathbf{A} \leftarrow \operatorname{knn}(\mathcal{X}_e \cup \mu_e) \in \mathbb{R}^{l \times l}$ all nodes from μ_e 7: $\mathcal{O}_e \leftarrow \{s \mid I(s) \ge t_q, s \in \mathcal{S}_e\}$ 8: return \mathcal{O}_e

Algorithm 1 General Summarization Routine 1: Input: A set of sentence representations $\mathcal{X}_e =$ $\{\mathbf{x}_s | s \in S_e\}$ are review sentences for entity *e*. ▷ adjacency Approximates the manifold matrix of k-NN graph, $l = |S_e| + 1$. structure using a kNN graph 4: $d \leftarrow \text{Dijkstra}(\mathbf{A}, \mu_e) \triangleright \text{shortest distances of}$ 5: $I = \{1/d(s) | s \in S_e\}$ \triangleright importance scores 6: $t_q \leftarrow \min \operatorname{top-}q(I) \qquad \triangleright \operatorname{top-}q$ threshold

- 2: $\mu_e \leftarrow \mathbb{E}_{s \sim S_e}[\mathbf{x}_s]$ 3: $\mathbf{A} \leftarrow \operatorname{knn}(\mathcal{X}_e \cup \mu_e) \in \mathbb{R}^{l \times l}$ all nodes from μ_e
- 7: $\mathcal{O}_e \leftarrow \{s \mid I(s) \ge t_q, s \in \mathcal{S}_e\}$ 8: return \mathcal{O}_e

Algorithm 1 General Summarization Routine 1: Input: A set of sentence representations $\mathcal{X}_e =$ $\{\mathbf{x}_s | s \in S_e\}$ are review sentences for entity *e*. ▷ adjacency matrix of k-NN graph, $l = |S_e| + 1$. 4: $d \leftarrow \text{Dijkstra}(\mathbf{A}, \mu_e) \triangleright \text{shortest distances of}$ Computing the distances along the manifold 5: $I = \{1/d(s) | s \in S_e\}$ \triangleright importance scores 6: $t_q \leftarrow \min \operatorname{top-}q(I) \qquad \triangleright \operatorname{top-}q$ threshold

- 2: $\mu_e \leftarrow \mathbb{E}_{s \sim S_e}[\mathbf{x}_s]$
- all nodes from μ_e

5:
$$I = \{1/d(s) | s \in$$

- 6: $t_q \leftarrow \min \operatorname{top} q(I)$
- 7: $\mathcal{O}_e \leftarrow \{s \mid I(s) \ge t_q, s \in \mathcal{S}_e\}$
- 8: return \mathcal{O}_e

Algorithm 1 General Summarization Routine 1: Input: A set of sentence representations $\mathcal{X}_e =$ $\{\mathbf{x}_s | s \in S_e\}$ are review sentences for entity *e*. 3: $\mathbf{A} \leftarrow \operatorname{knn}(\mathcal{X}_e \cup \mu_e) \in \mathbb{R}^{l \times l}$ ▷ adjacency matrix of k-NN graph, $l = |S_e| + 1$. 4: $d \leftarrow \text{Dijkstra}(\mathbf{A}, \mu_e) \triangleright \text{shortest distances of}$ Distances serve as the $\in \mathcal{S}_e$ ▷ importance scores importance of a sentence \triangleright top-q threshold

Algorithm 1 General Summarization Routine

2:
$$\mu_e \leftarrow \mathbb{E}_{s \sim S_e}[\mathbf{x}_s]$$

3:
$$\mathbf{A} \leftarrow \operatorname{knn}(\mathcal{X}_e \cup \mathcal{X}_e)$$

matrix of k -NN s

4:
$$d \leftarrow \text{Dijkstra}(\mathbf{A} all nodes from } \mu_e$$

5:
$$I = \{1/d(s) | s \in$$

6:
$$t_q \leftarrow \min \operatorname{top} -q($$

7:
$$\mathcal{O}_e \leftarrow \{s \mid I(s)\}$$

8: return
$$\mathcal{O}_e$$

1: Input: A set of sentence representations $\mathcal{X}_e =$ $\{\mathbf{x}_s | s \in S_e\}$ are review sentences for entity *e*. $\mu_e \in \mathbb{R}^{l \times l} \triangleright adjacency$ matrix of k-NN graph, $l = |S_e| + 1$. $(\mu_e) \triangleright$ shortest distances of e \mathcal{S}_e } ▷ importance scores \triangleright top-q threshold I)Select top q sentences as the $\geq t_q, s \in \mathcal{S}_e$ Output summary

• Users often find aspect-specific summaries useful

- Users often find aspect-specific summaries useful
- For example, a hotel entity has different aspects food, rooms, service etc.

- Users often find aspect-specific summaries useful
- For example, a hotel entity has different aspects food, rooms, service etc.
- Our framework supports this by using an aspect-specific mean representation

- Users often find aspect-specific summaries useful
- For example, a hotel entity has different aspects food, rooms, service etc.
- Our framework supports this by using an aspect-specific mean representation
- Aspect sentences are identified using keywords provided in the dataset

Outline

- Motivation
- Problem Setup
- Topical Representations
- Recipe for Summarization
- Representation Learning
- Sentence Selection
- Datasets and Metrics
- Results

Dataset

- SPACE (Angelidis et al. 2021) hotel reviews from Tripadvisor

• OPOSUM+ (Amplayo et al. 2021) — products reviews (e.g. laptops, bags) from **amazon**

• Amazon reviews (He and McAuley, 2016) — product reviews (e.g. electronics) from amazon

Evaluation

We compare the lexical overlap between system and reference summaries

- <u>ROUGE-1</u> refers to overlap of *unigrams* (words)
- <u>ROUGE-2</u> refers to overlap of *bigrams*
- <u>ROUGE-L</u> considers the longest common subsequence

Outline

- Motivation
- Problem Setup
- Topical Representations
- Recipe for Summarization
- Representation Learning
- Sentence Selection
- Datasets and Metrics
- Results

General Summarization - OPOSUM+

General Summarization - SPACE

GeoSumm

Aspect Summarization - OpoSum+

Human Evaluation - General Summaries

Human Evaluation — Aspect Summaries

Probing Representations

- The gardens are lovely with wide variety of **flowering** plants and shrubs, koi ponds, etc.
- Pots of tulips and daffodils in full bloom

Probing Representations

- The gardens are lovely with wide variety of **flowering** plants and shrubs, koi ponds, etc.
- Pots of tulips and daffodils in full bloom

- Calistoga is a beautiful historic town ...
- The Roman Spa and Calistoga is our favorite spot...

Probing Representations

Output Summaries

Human	GeoSumm	SemAE	QT
All staff members were friendly, accommodating, and helpful. The hotel and room were very clean. The room had modern charm and was nicely remodeled. The beds are extremely comfortable. The rooms are quite with wonderful beach views. The food at Hash, the restaurant in lobby, was fabulous. The location is great, very close to the beach. It's a longish walk to Santa Monica. The price is very affordable.	Overall we had a nice stay at the hotel. Our room was very clean and comfortable. The atmosphere is stylish and the service was great. We ate breakfast at the ho- tel and it was great. I ap- preciate the location and the security in the hotel. The food and service at the restaurant was awesome. The Hotel is classy and has a rooftop bar. The restau- rant is cozy but they have good healthy food. Great hotel.	The staff is great. The Ho- tel Erwin is a great place to stay. The staff were friendly and helpful. The location is perfect. We ate break- fast at the hotel and it was great. The hotel itself is in a great location. The service was wonderful. It was great. The rooms are great. The rooftop bar HIGH was the icing on the cake. The food and service at the restaurant was awesome. The service was excellent.	Great hotel. We liked our room with an ocean view. The staff were friendly and helpful. There was no balcony. The loca- tion is perfect. Our room was very quiet. I would definitely stay here again. You're one block from the beach. So it must be good! Filthy hallways. Unvacuumed room. Pricy, but well worth it.

GeoSumm learns topical representations from pre-trained text representations

- GeoSumm learns topical representations from pre-trained text representations
- GeoSumm uses them to capture salience using approximate geodesics

- GeoSumm learns topical representations from pre-trained text representations
- GeoSumm uses them to capture salience using approximate geodesics
- Topical representations work great, but are there better approaches?

- GeoSumm learns topical representations from pre-trained text representations
- GeoSumm uses them to capture salience using approximate geodesics
- Topical representations work great, but are there better approaches?
- Representations capturing varying semantics occupy different highdimensional space

