Unsupervised Extractive Summarization Using Sparse Coding

Somnath Basu Roy Chowdhury, Chao Zhao and Snigdha Chaturvedi {somnath, zhaochao, <u>snigdha}@cs.unc.edu</u>

UNC Chapel Hill

Introduction

- Automatic opinion summaries enable faster comparison, search, and better consumer feedback understanding
- Unsupervised opinion systems are desirable due to the scarcity of labeled data
- It is important to understand the underlying semantics in an opinion
- The underlying semantics can be captured as a distribution over latent semantic units
- Opinions aligning with popular semantic distribution are selected to form the summary

Semantic Autoencoder (SemAE)

SemAE performs extractive opinion summarization in the following phases:

- Text Representation Learning
- Summarization based on saliency scores
 - General Summarization relevance, redundancy and aspect-awareness
 - Aspect Summarization relevance and informativeness

Representation Learning

- Encoder takes Input (s) to generate a multi-head sentence representation $[s_h]_{h=1}^H$
- A latent representation is constructed over the learnable dictionary $\alpha_h = \operatorname{softmax}(s_h D^T)$
- \bullet The reconstructed vector $z_h = \alpha_h D$ is forwarded to the decoder to generate \hat{s}
- The model is trained to optimize the following loss:

$$\mathcal{L}_{CE}(s,\hat{s}) + \lambda_1 \sum_{h} |\alpha_h| + \lambda_2 \sum_{h} H(\alpha_h)$$

Sentence Selection

Sentences are selected based on their saliency scores $\mathcal{R}(\alpha^s)$. $\mathcal{R}(\alpha^s)$ is computed using:

• Relevance: $\Delta(\bar{\alpha}, \alpha^s)$

• Redundancy:
$$-\gamma \max_{s' \in \hat{O}_e} \Delta(\alpha^{s'}, \alpha^s)$$

- Aspect-awareness: Iterate over aspects and select salient sentences
- Informativeness: $-\beta\Delta(\alpha^B, \alpha^S)$

Summarization

General Summarization:

$$\mathcal{R}(\alpha^s) = [\text{Relevance}] - [\text{Redundancy}] + [\text{Aspect-awareness}]$$

Aspect Summarization:

 $\mathcal{R}(\alpha^s) = [\text{Relevance}] + [\text{Informativeness}]$

Evaluations

General Summarization (SPACE)

Aspect Summarization (SPACE)

Analysis

- Dictionary representations converges into clusters
- Clusters capture distinct semantic meanings
- Further analysis show that it captures both coarse/finegrained semantics

Conclusion

- SemAE learns sentence representations as a distribution over latent semantic units
- Sentence selection is performed using informationtheoretic metrics
- SemAE achieves strong performance on SPACE and Amazon opinion summarization datasets
- SemAE is able to perform different forms of controllable summarization