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Why do need Fair Representations?

• Pre-trained representations are used ubiquitously in NLP applications 

• Representations are retrieved from a model trained in a self-supervised manner 

• Developer does not have control over the pre-training corpus 

• Different forms of bias or sensitive information can percolate into downstream task
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Examples of Failure mode
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Biased translation in Google Translate



Examples of Failure mode
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Biased translation in Google Translate Gender Bias in automated resume screening tool at Amazon
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What are Fair Representations?

• Representations do not reveal information about private 
or sensitive attribute 

• Achieve group fairness — representations from different 
demographic groups look alike 

• Once debiased, information cannot be extracted by a 
subsequent network 
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Fairness Goals

• Achieve Demographic Parity — representations from 
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Fairness Goals

• Achieve Demographic Parity — representations from 
different demographic groups receive similar outcomes 

• Translating this to representation learning terms, given 
a probing network f
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|P( + |male) − P( + | female) | ≈ 0

|P( f(x) = male) − P( f(x) = female) | ≈ 0

Pre-trained model

Probing network

x

Information  
Bottleneck
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Formalizing the problem

• Given a set of representations  

• Each representation is associated with a protected attribute  

•  is a categorical variable,  

• Assume there existence of an optimal adversary  for prediction  

• Our goal:  

Z = {z1, z2, …}

A = {a1, a2, …}

ai ai ∈ {0,…, k}

f( ⋅ ) ai

|P( f(z) = ai) − P( f(z) = aj) | ≈ 0, ∀(i, j)
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Problem Setup

Perform debiasing in two different setups:
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Problem Setup

Perform debiasing in two different setups: 
• Unconstrained debiasing 

• Input - representation set , protected attribute  

• Goal - debias  from , while retaining all other information

Z A
Z A
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Problem Setup

Perform debiasing in two different setups: 
• Unconstrained debiasing 

• Input - representation set , protected attribute  

• Goal - debias  from , while retaining all other information 

• Constrained debiasing 

• Input - representation set , protected attribute , target attribute  

• Goal - debias  from , while exclusively retaining information about 

Z A
Z A

Z A Y
Z A Y

23



Outline

• Motivation 

• Problem Setup 

• Prior Work 

• Intuition behind our work 

• FaRM 

• Evaluation Setup 

• Results

24



Prior Work - Unconstrained debiasing
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Gender Subspace ( ⃗zmale − ⃗zfemale)
Female biased  

words

Male biased  
words

Debiasing Word Embeddings (Bolukbasi et al, 2016)



Prior Work - INLP
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Gender Subspace 
(SVM weights : null(W) : Wz = a)

Iterative Nullspace Projection (Ravfogel et al, 2020)

Female biased words

Male biased words
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Gender Subspace 
(SVM weights W : Wz = a)

Iterative Nullspace Projection (Ravfogel et al, 2020)

Female biased words

Male biased words

Step 2



Prior Work - INLP
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Iterative Nullspace Projection (Ravfogel et al, 2020)

Female biased words

Male biased words
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Prior Work - INLP
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Iterative Nullspace Projection (Ravfogel et al, 2020)

Female biased words

Male biased words

Non-linear Gender Subspace

Still amenable to non-linear  
probing attack

Step 4



Outline

• Motivation 

• Problem Setup 

• Prior Work 

• Intuition behind our work 

• FaRM 

• Evaluation Setup 

• Results

32



Information in high dimensions
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Information is encoded as distances  
among high-dimensional vectors. 
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Attack on Representations

35

Female biased  
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words



How do we nullify specific information?
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How do we nullify specific information?
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Information to be deleted: Gender

But some distances/information gets lost in the process 

How do we retain as much information as possible?



How do we nullify specific information?
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Information to be deleted: Gender

Feature vectors usually lie in low-dimensional manifolds; 
Increase the feature space



Recipe?
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• Morph the feature space using a learnable function f

Recipe?
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max
f

Volume(feature space) + Volume(feature space of individual subgroups)



• Rate-distortion measures the total number of binary bits required to encode 
a set of representations Z ∈ ℝd

Measuring Volume — Rate Distortion
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R(Z, ϵ) =
1
2

log2 det (I +
d

nϵ2
ZZT)



• To measure volume of subgroups (categories of an attribute, e.g. male/female), 
we use a partition function Π : Z → {Z1, …, Zk}

Measuring Volume — Rate Distortion
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R(Z, ϵ |Π) = R(Z1, ϵ) + … + R(Zk, ϵ)
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Fairness-aware Rate Maximization (FaRM)
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• Encode demographic information to be debiased as a partition function Π

Unconstrained Objective
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Π

f

Unconstrained Objective
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• Encode demographic information to be debiased as a partition function  

• Train a learnable function  with the objective:

Π

f
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f

R(Z, ϵ) + R(Z, ϵ |Π)

Volume(feature space)



• Encode demographic information to be debiased as a partition function  

• Train a learnable function  with the objective:

Π

f

Unconstrained Objective
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Sneak Peek into Results
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• We only care about the target attribute Y

Constrained Objective
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• We only care about the target attribute  

• Target-class informativeness —  

• Can we use rate-distortion to debias more robustly?

Y

min CE( ̂y, y)

Constrained Objective
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Recipe?
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min Volume(feature space) + max Volume(feature space of individual subgroups)



Proposed Model
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max
f,ϕ

−CE( ̂y, y) +

λ[Rc(Z, ϵ |Πg) − R(Z, ϵ)]

ϕ( ⋅ )

f( ⋅ )

z

x

̂y
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Evaluation
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• We evaluate the fairness of representations by 2 methods:

Metrics
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• Inspecting the fairness of outcomes
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• We evaluate the fairness of representations by 2 methods: 

• Probing representations for  

• Inspecting the fairness of outcomes 

• For constrained debiasing, we report the probing target accuracy

A

Metrics
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• Probing Accuracy - accuracy obtained by a network for probing  or A Y

Probing Metrics
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• Probing Accuracy - accuracy obtained by a network for probing  or  

• Minimum Description Length (MDL) - Coding length required to transmit 
labels  given the data  

• Higher MDL means more effort required in extracting  from 

A Y

Y X

Y X

Probing Metrics
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• Demographic Parity - captures the “equality of outcome”

Fairness Metrics
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|P( ̂Y = + |A = a) − P( ̂Y = + |A = ā) |



• Demographic Parity - captures the “equality of outcome” 

• TPR-GAP - captures “equality of opportunity” using different between TPR

Fairness Metrics
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|P( ̂Y = + |A = a) − P( ̂Y = + |A = ā) |

TPRA,Y = P( ̂Y = + |A = a, Y = + )

GapA,Y = TPRa,Y − TPRā,Y



Summary of Metrics
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Summary of Metrics
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• Target Attribute - Probing Accuracy (constrained) 

• Protected Attribute - Probing Accuracy and MDL (both) 

• Fairness - DP and TPR-GAP (both)
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Results - Unconstrained Debiasing
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Results - Unconstrained Debiasing
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Results - Constrained Debiasing
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Results - Constrained Debiasing
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Results - Constrained Debiasing
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Results - Debiasing Multiple Attributes
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