

Learning Fair Representations via Rate-Distortion Maximization

Somnath Basu Roy Chowdhury and Snigdha Chaturvedi

Transactions of the Association for Computational Linguistics (TACL), 2022

Outline

- Motivation
- Problem Setup
- Prior Work
- Intuition behind our work
- FaRM
- Evaluation Setup
- Results

Outline

- Motivation
- Problem Setup
- Prior Work
- Intuition behind our work
- FaRM
- Evaluation Setup
- Results

• Pre-trained representations are used ubiquitously in NLP applications

- Pre-trained representations are used ubiquitously in NLP applications
- Representations are retrieved from a model trained in a self-supervised manner

- Pre-trained representations are used ubiquitously in NLP applications
- Representations are retrieved from a model trained in a self-supervised manner
- Developer does not have control over the pre-training corpus

- Pre-trained representations are used ubiquitously in NLP applications
- Representations are retrieved from a model trained in a self-supervised manner
- Developer does not have control over the pre-training corpus
- Different forms of bias or sensitive information can percolate into downstream task

Examples of Failure mode

Filipino – detected 👻 📢	¢.	English 👻	Ū	
siya ay mahinhin		she is modest		
			E	
Filipino – detected 👻) ←	English •		۹D
siya ay matapang		he is brave		

Biased translation in Google Translate

Examples of Failure mode

Filipino – detected 👻 📢	¢.	English 👻	Ū	
siya ay mahinhin		she is modest		
			E	
Filipino – detected 👻) ←	English •		۹D
siya ay matapang		he is brave		

Biased translation in Google Translate

Gender Bias in automated resume screening tool at Amazon

What are Fair Representations?

 Representations do not reveal information about private or sensitive attribute

What are Fair Representations?

- Representations do not reveal information about private or sensitive attribute
- Achieve <u>group fairness</u> representations from different demographic groups look alike

What are Fair Representations?

- Representations do not reveal information about private or sensitive attribute
- Achieve group fairness representations from different demographic groups look alike
- Once debiased, information cannot be extracted by a subsequent network

Fairness Goals

- Achieve Demographic Parity representations from different demographic groups receive similar outcomes
 - $|P(+|\text{male}) P(+|\text{female})| \approx 0$

Fairness Goals

 Achieve Demographic Parity — representations from different demographic groups receive similar outcomes

 $|P(+| \text{male}) - P(+| \text{female})| \approx 0$

 Translating this to representation learning terms, given a probing network f

 $|P(f(x) = \text{male}) - P(f(x) = \text{female})| \approx 0$

Outline

- Motivation
- Problem Setup
- Prior Work
- Intuition behind our work
- FaRM
- Evaluation Setup
- Results

• Given a set of representations $Z = \{z_1, z_2, ...\}$

- Given a set of representations $Z = \{z_1, z_2, ...\}$
- Each representation is associated with a protected attribute $A = \{a_1, a_2, \dots\}$

- Given a set of representations $Z = \{z_1, z_2, ...\}$
- Each representation is associated with a protected attribute $A = \{a_1, a_2, \dots\}$
- a_i is a categorical variable, $a_i \in \{0, \dots, k\}$

- Given a set of representations $Z = \{z_1, z_2, \dots\}$
- Each representation is associated with a protected attribute $A = \{a_1, a_2, \dots\}$
- a_i is a categorical variable, $a_i \in \{0, \dots, k\}$
- Assume there existence of an optimal adversary $f(\cdot)$ for prediction a_i

- Given a set of representations $Z = \{z_1, z_2, \dots\}$
- Each representation is associated with a protected attribute $A = \{a_1, a_2, \dots\}$
- a_i is a categorical variable, $a_i \in \{0, \dots, k\}$
- Assume there existence of an optimal adversary $f(\cdot)$ for prediction a_i
- Our goal: $|P(f(z) = a_i) P(f(z) = a_i)| \approx 0, \forall (i,j)$

Problem Setup

Perform debiasing in two different setups:

Problem Setup

Perform debiasing in two different setups:

- Unconstrained debiasing
 - Input representation set Z, protected attribute A
 - Goal debias Z from A, while retaining all other information

Problem Setup

Perform debiasing in two different setups:

- Unconstrained debiasing
 - Input representation set Z, protected attribute A
 - Goal debias Z from A, while retaining all other information
- Constrained debiasing

 - Input representation set Z, protected attribute A, target attribute Y • Goal - debias Z from A, while exclusively retaining information about Y

Outline

- Motivation
- Problem Setup
- Prior Work
- Intuition behind our work
- FaRM
- Evaluation Setup
- Results

Prior Work - Unconstrained debiasing

Debiasing Word Embeddings (Bolukbasi et al, 2016)

Prior Work - Unconstrained debiasing

Debiasing Word Embeddings (Bolukbasi et al, 2016)

Gender Subspace $(\vec{z}_{male} - \vec{z}_{female})$

Prior Work - Unconstrained debiasing

Debiasing Word Embeddings (Bolukbasi et al, 2016)

Gender Subspace $(\vec{z}_{male} - \vec{z}_{female})$

Iterative Nullspace Projection (Ravfogel et al, 2020)

Iterative Nullspace Projection (Ravfogel et al, 2020)

Gender Subspace (SVM weights W: Wz = a)

Step 3

Iterative Nullspace Projection (Ravfogel et al, 2020)

Gender Subspace $(\vec{z}_{male} - \vec{z}_{female})$

Step 4

Iterative Nullspace Projection (Ravfogel et al, 2020)

Non-linear Gender Subspace

Still amenable to non-linear probing attack

Outline

- Motivation
- Problem Setup
- Prior Work
- Intuition behind our work
- FaRM
- Evaluation Setup
- Results

Information in high dimensions

Information is encoded as distances among high-dimensional vectors.

Attack on Representations

Attack on Representations

Male biased words

How do we nullify specific information?

Information to be deleted: Gender

Male biased words
How do we nullify specific information?

Information to be deleted: Gender

How do we nullify specific information?

Information to be deleted: Gender

But some distances/information gets lost in the process

How do we retain as much information as possible?

How do we nullify specific information?

Information to be deleted: Gender

Feature vectors usually lie in low-dimensional manifolds; Increase the feature space

• Morph the feature space using a learnable function f

f

max Volume(feature space) + Volume(feature space of individual subgroups)

Measuring Volume — Rate Distortion

 Rate-distortion measures the total number of binary bits required to encode a set of representations $Z \in \mathbb{R}^d$

 $R(Z,\epsilon) = \frac{1}{2}\log_2 \det\left(I + \frac{d}{n\epsilon^2}ZZ^T\right)$

Measuring Volume — Rate Distortion

we use a partition function $\Pi: Z \rightarrow \{Z_1, ..., Z_k\}$

• To measure volume of subgroups (categories of an attribute, e.g. male/female),

 $R(Z, \epsilon \mid \Pi) = R(Z_1, \epsilon) + \ldots + R(Z_k, \epsilon)$

Outline

- Motivation
- Problem Setup
- Prior Work
- Intuition behind our work
- FaRM
- Evaluation Setup
- Results

Fairness-aware Rate Maximization (FaRM)

• Encode demographic information to be debiased as a partition function Π

- Encode demographic information to be debiased as a partition function II
- Train a learnable function f with the objective:

$\max_{f} R(Z, \epsilon) + R(Z, \epsilon \mid \Pi)$

- Encode demographic information to be debiased as a partition function Π
- Train a learnable function f with the objective:

$$\epsilon) + R(Z, \epsilon \mid \Pi)$$

- Encode demographic information to be debiased as a partition function II
- Train a learnable function f with the objective:

 $\max_{f} R(Z, \epsilon) + R(Z, \epsilon \mid \Pi)$

Volume(feature space of individual subgroups)

Sneak Peek into Results

Method	Accuracy (\downarrow)	MDL (†)	Rank (†)		
GloVe	100.0	0.1	300		
INLP	86.3	8.6	210		
FaRM	53.9	24.6	247		

• We only care about the target attribute Y

- We only care about the target attribute Y
- Target-class informativeness $\min CE(\hat{y}, y)$

- We only care about the target attribute Y
- Target-class informativeness $\min CE(\hat{y}, y)$
- Can we use rate-distortion to debias more robustly?

min Volume(feature space) + max Volume(feature space of individual subgroups)

Proposed Model

Outline

- Motivation
- Problem Setup
- Prior Work
- Intuition behind our work
- FaRM
- Evaluation Setup
- Results

Evaluation

Metrics

• We evaluate the fairness of representations by 2 methods:

Metrics

- We evaluate the fairness of representations by 2 methods:
 - Probing representations for A
 - Inspecting the fairness of outcomes

Metrics

- We evaluate the fairness of representations by 2 methods:
 - Probing representations for A
 - Inspecting the fairness of outcomes
- For constrained debiasing, we report the probing target accuracy

Probing Metrics

• Probing Accuracy - accuracy obtained by a network for probing A or Y

Probing Metrics

- Probing Accuracy accuracy obtained by a network for probing A or Y
- * Minimum Description Length (MDL) Coding length required to transmit labels \boldsymbol{Y} given the data \boldsymbol{X}
 - Higher MDL means more effort required in extracting Y from X

Fairness Metrics

- Demographic Parity captures the "equality of outcome"
 - $|P(\hat{Y} = + |A = a) P(\hat{Y} = + |A = \bar{a})|$

Fairness Metrics

 Demographic Parity - captures the "equality of outcome" $|P(\hat{Y} = + |A = a) -$

- TPR-GAP captures "equality of opportunity" using different between TPR
 - $\text{TPR}_{A,Y} = P(\hat{Y} = +$ $\operatorname{Gap}_{A,Y} = \operatorname{TPF}$

$$-P(\hat{Y} = + |A = \bar{a})|$$

$$|A = a, Y = +)$$

 $R_{a,Y} - TPR_{\bar{a},Y}$

Summary of Metrics

Summary of Metrics

- Target Attribute Probing Accuracy (constrained)
- Protected Attribute Probing Accuracy and MDL (both)
- Fairness DP and TPR-GAP (both)

Outline

- Motivation
- Problem Setup
- Prior Work
- Intuition behind our work
- FaRM
- Evaluation Setup
- Results

Results - Unconstrained Debiasing

Matric	Mathad	Split					
Metric	Method	50%	60%	70%	80%		
Sentiment Acc. (↑)	Original INLP FaRM	75.5 75.1 74.8	75.5 73.1 73.2	74.4 69.2 67.3	71.9 64.5 63.5		
Race Acc. (↓)	Original INLP FaRM	87.7 69.5 54.2	87.8 82.2 69.9	87.3 80.3 69.0	87.4 69.9 52.1		
DP (↓)	Original INLP FaRM	0.26 0.16 0.09	0.44 0.33 0.10	0.63 0.30 0.17	0.81 0.28 0.22		
$\operatorname{Gap}_{\mathbf{g}}^{\operatorname{RMS}}\left(\downarrow\right)$	Original INLP FaRM	0.15 0.12 0.09	0.24 0.18 0.10	0.33 0.16 0.12	0.41 0.16 0.14		

Results - Unconstrained Debiasing

	Metric	Method	FastText	BERT
	Profession Acc. (↑)	Original INLP FaRM	79.9 76.3 54.8	80.9 77.8 55.8
	Gender Acc. (↓)	Original INLP FaRM	98.9 67.4 57.6	99.6 94.9 55.6
	DP (↓)	Original INLP FaRM	1.65 1.51 0.12	1.68 1.50 0.14
	$\operatorname{Gap}_{\mathbf{g}}^{\operatorname{RMS}}\left(\downarrow\right)$	Original INLP FaRM	0.185 0.089 0.006	0.171 0.096 0.079

Results - Unconstrained Debiasing

Figure 4: Projections of Glove embeddings before (left) and after (right) debiasing. Intial female and male biased representations are shown in **red** and **blue** respectively.

Results - Constrained Debiasing

	DIAL											
Method	Sentiment (y) R		Rac	Race (g) F		irness Ment		tion (y) Race (e (g)	g) Fairness	
	F1↑	MDL↓	$\Delta F1\downarrow$	MDL↑	DP↓	$\operatorname{Gap}_{\mathbf{g}}^{\operatorname{RMS}}\downarrow$	F1↑	MDL↓	Δ F1 \downarrow	MDL†	DP↓	$\operatorname{Gap}_{\mathbf{g}}^{\operatorname{RMS}}\downarrow$
BERT _{base} (pre-trained)	63.9	300.7	10.9	242.6	0.41	0.20	66.1	290.1	24.6	258.8	0.20	0.10
BERT _{base} (fine-tuned)	76.9	99.0	18.4	176.2	0.30	0.14	81.7	49.1	28.7	199.2	0.06	0.03
AdS	72.9	56.9	5.2	290.6	0.43	0.21	81.1	7.6	21.7	270.3	0.06	0.03
FaRM	73.2	17.9	0.2	296.5	0.26	0.14	78.8	3.1	0.3	324.8	0.06	0.03
Results - Constrained Debiasing

	PAN16												
Method	Mention (y)		Gend	Gender (g)		Fairness		Mention (\mathbf{y})		Age (g)		Fairness	
	F1↑	MDL↓	$\Delta F1\downarrow$	MDL†	DP↓	$\operatorname{Gap}_{\mathbf{g}}^{\operatorname{RMS}}\downarrow$	F1↑	MDL↓	$\Delta F1\downarrow$	MDL↑	DP↓	$\operatorname{Gap}_{\mathbf{g}}^{\operatorname{RMS}}$,	
BERT _{base} (pre-trained)	72.3	259.7	7.4	300.5	0.11	0.056	72.8	262.6	6.1	302.0	0.14	0.078	
BERT _{base} (fine-tuned)	89.7	4.0	15.1	267.6	0.04	0.007	89.3	4.8	7.4	295.4	0.04	0.006	
AdS	89.7	7.6	4.9	313.9	0.04	0.007	89.2	6.0	1.1	315.1	0.04	0.004	
FaRM	88.7	1.7	0.0	312.4	0.04	0.007	88.6	0.8	0.0	312.6	0.03	0.008	

Results - Constrained Debiasing

	BIOGRAPHIES								
Method	Profes	ssion (y)	Gend	ler (g)	Fairness				
	F1↑	$MDL\downarrow$	$\Delta F1\downarrow$	$MDL\uparrow$	DP↓	$\operatorname{Gap}_{\mathbf{g}}^{\operatorname{RMS}}\downarrow$			
BERT _{base} (pre-trained)	74.3	499.9	45.2	27.6	0.43	0.169			
BERT _{base} (fine-tuned)	99.9	2.2	8.3	448.9	0.46	0.001			
AdS	99.9	3.3	3.1	449.5	0.45	0.003			
FaRM	99.9	7.6	7.4	460.3	0.42	0.002			

Results - Debiasing Multiple Attributes

		Pan16											
Setup	Mention (y)		Age (\mathbf{g}_1)		Fairness (g_1)		Gender (\mathbf{g}_2)		Fairness (g_2)		Inter. Groups $(\mathbf{g}_1, \mathbf{g}_2)$		
	F1↑	MDL↓	$\Delta F1\downarrow$	$MDL\uparrow$	DP↓	$\operatorname{Gap}_{\mathbf{g}}^{\operatorname{RMS}}\downarrow$	$\Delta F1\downarrow$	$MDL\uparrow$	DP↓	$\operatorname{Gap}_{\mathbf{g}}^{\operatorname{RMS}}\downarrow$	Δ F1 \downarrow	MDL↑	
BERT _{base} (fine-tuned)	88.6	6.8	14.9	196.4	0.06	0.009	16.5	192.0	0.04	0.014	20.7	117.2	
ADS	88.6	5.5	2.2	231.5	0.05	0.006	1.6	230.9	0.04	0.017	9.1	118.5	
FaRM (N-partition)	87.0	13.4	0.0	234.3	0.03	0.003	0.0	234.2	0.06	0.025	0.7	468.0	
FaRM (1-partition)	86.4	15.6	0.0	234.6	0.05	0.006	0.0	234.2	0.02	0.009	0.0	467.7	

• We propose a robust framework to delete specific information from representation

- First approach to show any resistance against non-linear probing attacks

We propose a robust framework to delete specific information from representation

- We propose a robust framework to delete specific information from representation
- First approach to show any resistance against non-linear probing attacks
- FaRM is robust to label corruption and dataset size

- We propose a robust framework to delete specific information from representation
- First approach to show any resistance against non-linear probing attacks
- FaRM is robust to label corruption and dataset size
- FaRM prevents leakage of intersectional biases

- We propose a robust framework to delete specific information from representation
- First approach to show any resistance against non-linear probing attacks
- FaRM is robust to label corruption and dataset size
- FaRM prevents leakage of intersectional biases
- We encourage researchers to use FaRM for XAI, or ensuring fairness in complex ML tasks (e.g. language generation)

- We propose a robust framework to delete specific information from representation
- First approach to show any resistance against non-linear probing attacks
- FaRM is robust to label corruption and dataset size
- FaRM prevents leakage of intersectional biases
- We encourage researchers to use FaRM for XAI, or ensuring fairness in complex ML tasks (e.g. language generation)

