

Sustaining Fairness via Incremental Learning

Somnath Basu Roy Chowdhury and Snigdha Chaturvedi {somnath, snigdha}@cs.unc.edu UNC Chapel Hill

Introduction

- Ensuring fairness of ML approaches is crucial in sensitive applications like hiring
- Current fairness approaches are trained and tested on a single data domain
- These approaches fail to remain fair under domain shift
- This calls for approaches that can function in the wild

Fair Incremental Learning

- We tackle the above problem by incrementally learning new tasks while ensuring fairness
- Most incremental learning systems focus on target task
- We introduce FaIRL, that learns fair representations while acquiring knowledge of new tasks

Fairness-aware
$\max_D \Delta R(Z'$
z (O
The debiasing frame
representations for a This framework lear making it amenable
Feature encoder is r
• Discriminative r $\max \Delta R(Z_{new},$
 Protect leakage
 Retain old subs

- Protect leakage for X_{old} : min $\Delta R(Z'_{old}, \Pi^g_{old})$
- $^{\bullet}\,$ We sample X_{old} using either random sampling, prototype sampling or submodular optimization

- ework shown above is learns fair a single domain
- rns compact representations, given a task, e to incremental learning
- modified to achieve the following:

```
representation for X_{new}:
```

$$\Pi_{new}^{y}$$
)

- e for X_{new} : min $\Delta R(Z'_{new}, \Pi^g_{new})$
- Retain old subspaces: $\min \Delta R(Z_{old}, \overline{Z}_{old})$

Evaluation

Accuracy over different training stages on Biased MNIST

Accuracy and TPR-GAP over different training stages on Biography Classification dataset

Conclusion

- We propose FaIRL, that learns fair representations in an incremental fashion
- FaIRL controls the rate-distortion function of representations
- FaIRL outperforms existing methods by significant margin
- FaIRL is a first step towards achieving fairness in the wild

