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Spotlight



Motivation
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• ML systems often produce unfair decisions 
against certain groups 

• We study the challenging problem of 
achieving fairness in online settings



Group Fairness
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Group Fairness techniques focus on enhancing the fairness of ML 
algorithms by ensuring that different groups receive equal treatment.



• In batch-wise settings, a learning function  can be optimized as shown:f
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Batch-wise Group Fairness

min
f

L( f(x), y),  subject to  |𝔼[ f(x |a = 0)] − 𝔼[ f(x |a = 1)] | < ϵ .

 is the sensitive attribute 
(e.g., gender)

a



• In batch-wise settings, a learning function  can be optimized as shown:f
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Batch-wise Group Fairness

min
f

L( f(x), y),  subject to  |𝔼[ f(x |a = 0)] − 𝔼[ f(x |a = 1)] | < ϵ .

Difference between predictions of two groups
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Online Setting

f

x1 x2 x3 x4 x5 x6 x7

̂y4

t

• In online setup, input points  arrive one at a timex1, x2, …



f(x1 |a = 0) + … + f(xn |a = 0)
n

− 𝔼[ f(x |a = 1)] < ϵ .
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Online Setting

f

x1 x2 x3 x4 x5 x6 x7

̂y4

t

Challenge: Fairness gradient computation 
requires storage and multiple passes of f
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Overview of Aranyani 

⋮
x

x

x1 x2 x3

Online Learning  
For Group Fairness

Gradient Estimation Using  
Aggregate Statistics

i

θ0 θ1

x

θ2 θ3

𝔼[ni]

Store at every 
node i

𝔼[∇ni]

Prediction Using Oblique 
 Decision Forests

Discrimination < ϵ

y1 y2 y3 ⟹

f |T|(x)

f1(x)

f(x) = 𝔼 [f t(x)]
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Aranyani
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Aranyani

1

2 3

θ0 θ1 θ2 θ3

p1 1 − p1

p2 1 − p2 p3 1 − p3

x

f(x) = p1p2θ0+p1(1 − p2)θ1+(1 − p1)p3θ2+(1 − p1)(1 − p3)θ3
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Aranyani

1

2 3

θ0 θ1 θ2 θ3

p1

1 − p2 p3 1 − p3

x

⋮
x

x

⟹

f |T|(x)

f1(x)

f(x) = 𝔼 [f t(x)]
1 − p1

p2



G(Θ) = ∇ΘL( f(x), y) + λ∑
i,j

∇ΘHδ(Fij)

Differentiable Huber loss for 
node-level decisions
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Fairness Gradient Estimation

• The fairness gradient estimation process is shown below:
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Theoretical Results

• Estimation error of fairness gradients is bounded:  

• The gradient norm  is bounded by

δB/2

ΦT

ΦT ≤ (ϵ + 2h−2λ2δ2B2)

: tree height, : loss hyperparamaterh λ

: Huber constant, : input boundδ B
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Experiments

• Experiments show effectiveness in Tabular, Vision, and Language datasets 

• During online learning, at each step we measure the task performance and fairness 

• We report the average performances at the final step, T
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Tabular Datasets

MLPHoeffding Tree (HT) Adaptive HT AranyaniMajority LeafFAHT

Ideal Ideal Ideal
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Vision & Language Datasets

MLPHoeffding Tree (HT) Adaptive HT AranyaniMajority Leaf

IIt turns out the rem

Ideal Ideal
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Summary
We propose Aranyani to achieve group 
fairness in online environments

x1 x2 x3

Discrimination < ϵ

y1 y2 y3

⋮

x x
Aranyani leverages oblique decision forests 
for efficient online gradient computation

i

x

𝔼[ni]
Store at every 

node i

𝔼[∇ni]
Aranyani achieves impressive performance in 
real-world scenarios
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