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Bias in NLP Systems

Content in the following slides can be offensive to some people
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[Bolukbasi et al., 2016]
[Burns et al., 2019]

[Part et al., 2018]

[Douglas, 2018]
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Motivation

Natural Language is used for prediction

• College applications

• Hiring decisions

• Credit Eligibility
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Vanilla Approach
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Text Classification
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Encode Predict



Text Classification
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• Natural Language is highly indicative of demographic attributes (gender/age/race)

• Models can encode such information even without having direct access to them



Text Classification
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Predict

It is possible to extract demographic
attributes from intermediate text 

representations.
Gender

Race



Text Classification - Example
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Goal: Fairness by Blindness
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Predict

Decisions should not be conditioned on 
demographic attributes. Intermediate 

representations should be oblivious to such 
information. Gender

Race



Adversarial Scrubber (AdS)
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Setup
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Encoder

Scrubber

Discriminator Target Classifier

I love going to the spa. 

Representations oblivious to
demographic information

e

u



Scrubber
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Encoder

Scrubber

Discriminator Target Classifier

I love going to the spa. 

Scrubber learns fair representations by leveraging:
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Scrubber
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Encoder

Scrubber

Discriminator Target Classifier

I love going to the spa. 

Scrubber learns fair representations by penalizing:

• Entropy of the discriminator output d(u)
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u



Scrubber
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Encoder

Scrubber

Discriminator Target Classifier

I love going to the spa. 

Scrubber learns fair representations by penalizing:

• Entropy of the discriminator output 

• -loss: penalises probability assigned to the correct 
target logit

              

: one-hot vector indicating the correct logit position

d(u)

δ

δ(d(u)) = mTsoftmaxgumble(d(u))

m e

u



Target Classifier
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Scrubber

Discriminator Target Classifier

I love going to the spa. 

• Predicts target label from scrubbed 
representations (u)
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Target Classifier
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Encoder

Scrubber

Discriminator Target Classifier

I love going to the spa. 

• Predicts target label from scrubbed 
representations 

• Optimizes cross-entropy loss

(u)
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u



Bias Discriminator
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Encoder

Scrubber

Discriminator Target Classifier

I love going to the spa. 

• Predicts protected variable from scrubbed 
representations (u)
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Bias Discriminator
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Encoder

Scrubber

Discriminator Target Classifier

I love going to the spa. 

• Predicts protected variable from scrubbed 
representations 

• Optimizes cross-entropy loss

(u)
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Training
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Encoder
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Discriminator Target Classifier

I love going to the spa. 

Δθd
ℒdiscriminator



Training
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Encoder

Scrubber

Discriminator Target Classifier

I love going to the spa. 

Δθc,θs,θh
ℒscrubber



Probing
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Bias Probe Target Probe

u

• 8 datasets from domains: dialogue, tweet and 
biography classification

• 1-layer MLP Classifier

• Metrics evaluated:

• Accuracy

• Minimum Description Length (MDL)

• Target task accuracy 



Results - Dialogue datasets
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Results - Dialogue datasets
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Results - Dialogue datasets
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Results - Dialogue datasets
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Results - Tweet/biography classification
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Results - Tweet/biography classification
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Results - Tweet/biography classification
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Takeaways
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★ Text classification systems can encode demographic information even 
without having direct access to them
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about demographic attributes
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★ Text classification systems can encode demographic information even 
without having direct access to them

★ To ensure fairness, intermediate representations should have zero leakage 
about demographic attributes

★ Empirical evaluation on 8 datasets show AdS is able to prevent leakage while 
maintaining target task performance

★ We are far away from achieving complete fairness in AI, therefore such 
systems should be used in the real world with caution
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★ Text classification systems can encode demographic information even 
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somnath@cs.unc.edu@SomnathBrc brcsomnath/adversarial-scrubber
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https://twitter.com/SomnathBrc
https://github.com/brcsomnath/adversarial-scrubber

