
A Recursive Strategy for Symbolic Execution
to Find Exploits in Hardware Designs

Rui Zhang
University of North Carolina

at Chapel Hill, USA

rzhang@cs.unc.edu

Cynthia Sturton
University of North Carolina

at Chapel Hill, USA

csturton@cs.unc.edu

Abstract

This paper presents hardware-oriented symbolic execution

that uses a recursive algorithm to find, and generate exploits

for, vulnerabilities in hardware designs. We first define the

problem and then develop and formalize our strategy. Our

approach allows for a targeted search through a possibly in-

finite set of execution traces to find needle-in-a-haystack er-

ror states. We demonstrate the approach on the open-source

OR1200 RISC processor. Using the presented method, we

find, and generate exploits for, a control-flow bug, an in-

struction integrity bug and an exception related bug.

CCS Concepts • Security and privacy→ Logic and ver-

ification;

Keywords Recursive Strategy, Symbolic Execution, Hard-

ware Security, Exploit Generation

ACM Reference Format:

Rui Zhang and Cynthia Sturton. 2018. A Recursive Strategy for

Symbolic Execution to Find Exploits in Hardware Designs. In Pro-

ceedings of 2018 ACM SIGPLAN International Workshop on Formal

Methods and Security (FMS’18). ACM, New York, NY, USA, 9 pages.

h�ps://doi.org/10.1145/3219763.3219764

1 Introduction

This paper presents the use of a recursive strategy for sym-

bolic execution to find exploitable vulnerabilities in hard-

ware designs. Hardware vulnerabilities present an enticing

target to attackers [5–8, 21]. As demonstrated by the Spectre

and Meltdown attacks, bugs in hardware designs can have

wide-reaching consequences and can be difficult to patch

post-deployment [3, 25, 29]. By making symbolic execution

feasible for large scale hardware designs, we provide a new,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for com-

ponents of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

FMS’18, June 18, 2018, Philadelphia, PA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed

to the Association for Computing Machinery.

ACM ISBN 978-1-4503-5833-0/18/06. . . $15.00

h�ps://doi.org/10.1145/3219763.3219764

effective, and practical method for the hardware designer to

use in the ever-present race to detect vulnerabilities before

tape-out.

Current practice in hardware design verification combines

formal static analysis techniqueswith simulation-based test-

ing. While these methods can successfully find functional

assertion violations, neither are well-suited to the identifi-

cation and analysis of security-critical vulnerabilities.

The efficacy of simulation-based testing depends on the

coverage of the testbenches used, and is unlikely to uncover

a vulnerability that is exploitable by only a handful of pos-

sible input sequences. On the other hand, formal static anal-

ysis, typically in the form of model checking, requires the

user to determine the root cause for any found violations.

This analysis is difficult – involving consideration of envi-

ronment constraints, invalid input sequences, and specifi-

cation errors – and often requires cooperation between se-

curity experts, hardware designers, and formal methods ex-

perts [22, 32].

Symbolic execution, widely used in the software security

community, is a powerful technique for automatically gen-

erating test cases to trigger security vulnerabilities [16]. It

has a reputation for relative ease of use and high code cov-

erage. Yet, standard symbolic execution as used in the soft-

ware domain is not directly applicable to full-scale hardware

designs; its use has been limited to individual modules [33].

The large state space of a modern processor combined with

the continuous execution of hardware makes for a search

space that is infeasible to tackle. In this paperwe develop the

use of symbolic execution for full-scale hardware designs.

We focus on processor designs. Our goal is to use sym-

bolic execution to generate a sequence of input values – in-

structions and control signals – that will take the proces-

sor from the reset state to a vulnerable state. We tackle the

problem recursively, generating that last input values in the

sequence first, thereby (ideally) reducing the problem from

finding a sequence of length m to finding a sequence of

lengthm − 1. In each iteration we use forward symbolic ex-

ecution to find the set of input values that will move the

processor one clock-cycle forward along the desired path.

Because there is no guarantee the recursive search strategy

will converge to the reset state, we develop heuristics that

steer the search toward the reset state and break potential

loops.

https://doi.org/10.1145/3219763.3219764
https://doi.org/10.1145/3219763.3219764

FMS’18, June 18, 2018, Philadelphia, PA, USA Rui Zhang and Cynthia Sturton

Using standard symbolic exploration tree definitions, we

formalize the strategy of hardware-oriented symbolic exe-

cution with recursive reasoning. We show that this strat-

egy is more efficient than standard forward symbolic ex-

ecution, and produces concrete, replayable instruction se-

quences that exploit hardware vulnerabilities.

We have built the recursive reasoning method based on

KLEE [14], a popular symbolic execution engine, and demon-

strate its effectiveness on the OR1200 RISC processor. Our

use of recursive reasoning makes symbolic execution feasi-

ble for full-scale hardware designs, bringing the benefits of

fast, easy-to-use symbolic execution to the hardware design

space.

In summary, this paper presents the following contribu-

tions:

1. We formally define our strategy of recursive reason-

ing with hardware-oriented symbolic execution to dis-

cover vulnerabilities and generate exploits in full-scale

hardware designs.

2. We present the heuristics thatmake the recursive search

strategy practical and effective.

3. We demonstrate the method on three security-critical

bugs in the OR1200 RISC processor, successfully find-

ing and generating exploits for all three bugs, includ-

ing one that the commercial model checking tool, Ca-

dence, could not find.

2 Problem Formulation

We define our threat model, introduce notation, and define

the problem we tackle.

2.1 Threat Model

We consider a processor design with vulnerable flaws that

are exploitable, post-deployment, by software. By exploiting

the vulnerabilities, attackers may be able to escalate their

privilege level, leak or modify confidential data in memory,

or redirect the processor to execute code of their choosing.

We assume the attacker acts post-deployment, and there-

fore does not modify the processor design. The attacker is,

however, capable of finding vulnerabilities that exist within

the design. We assume the attacker is able to send network

packets, execute a particular sequence of instructions, or

both on the target machine.

Our objective is to generate a trace of instructions that

can exploit a vulnerability in the processor design so that de-

signers can be alerted to the vulnerability, assess the threat

posed by the vulnerability, and patch the vulnerability be-

fore tape-out. We limit our scope to the register transfer

level processor designs; we do not analyze designs at the

gate- or transistor-level.

2.2 Definitions and Notation

We first introduce the notation needed to define a processor

and exploit program, and then formally state the problem

we tackle.

Definition 1. We model the processor as a tuple

M = (S, s0, I , δ ,O,ω), where
• S is the finite set of processor states,

• s0 ∈ S is the initial state of the processor,

• I = {0, 1}n is the finite set of input strings to the proces-

sor,

• δ : S × I → S is the transition function of the processor,

• O = {0, 1}m is the finite set of output strings of the pro-

cessor, and

• ω : S → O is the output function that maps processor

states to output strings.

A processor state s ∈ S is a concrete valuation of all state-

holding, internal elements of the processor. These include

micro-architectural registers, control signals, and memory.

The initial state s0 of the processor is the reset state. Many

registers have a valuation of 0 in the reset state.

All input strings i ∈ I are of fixed-length n over the binary

alphabet {0, 1}. The string i is a concatenation of all input

values to the processor: the next processor instruction, any

data fetched from memory, and acknowledge, error, debug,

interrupt, and some control signals.

The transition function δ describes the evolution of the

processor in a single clock cycle. It is a left-total function: for

every s ∈ S and every i ∈ I , δ (s, i) is defined. The function

is determined by the combinational logic of the processor

design.

All output strings o ∈ O are of fixed-length m over the

binary alphabet {0, 1}.
The output function ω is the identity function over a sub-

set of processor state elements.

We will define an exploit program as a sequence of inputs

that take the processor from the initial state to an error state.

Wemust first introduce additional notation and define asser-

tions and error states.

The processor state can be viewed as a vector of the state-

holding, internal elements of the processor: s = 〈r0, r1, . . . , r |s |〉.

(We denote the number of such elements as |s |, although it

is invariable and does not change with each state.)

An assertion encodes a desired property of the processor.

Let A(s) be an assertion over a processor state s ∈ S :

A(s) � ϕ(〈r0, r1, . . . , r |s |〉), (1)

where ϕ is a boolean-valued function over (a subset of) the

state-holding elements of the processor. The property ϕ is a

function in a quantifier-free fragment of first order logic [10].

An example ϕ is ϕ(GPR0) � ITE(GPR0 == 0, T, F); asserting
this function encodes the property that the general purpose

register GPR0 should always have value 0.

A Recursive Strategy for Symbolic Execution to ... FMS’18, June 18, 2018, Philadelphia, PA, USA

For any assertion A, there may be a set of error states

EA ⊆ S , which violate the assertion:

EA = {s ∈ S |¬A(s)} (2)

We can now define an exploit program PA,M for a proces-

sor M and assertion A.

Definition 2. The exploit program PA,M = (i0, i1, . . . , im)
is a sequence of input strings that, starting from the ini-

tial state, invokes a sequence of states, s0, s1, . . . , sm−1, sm, se ,

where

• s0 is the initial state,

• ∀j 0 ≤ j ≤ m. i j ∈ I ,

• ∀j 0 ≤ j ≤ m. sj ∈ S ,

• se ∈ EA is an error state that violates the assertion, and

• s1 = δ (s0, i0), s2 = δ (s1, i1), . . . , se = δ (sm , im).

We now formally state the problem we tackle in this pa-

per, which is two-fold.

Problem Statement Given a processor M and assertion

A,

1. Determine whether there exist any error states that vio-

late the assertion (EA , {}), and

2. If any such states exist, generate an exploit program PA,M
for each violating state.

3 Symbolic Execution of Hardware
Designs

In this section we define symbolic execution for the domain

of hardware designs. We start with a brief review of stan-

dard symbolic execution as applied to software [23] and then

provide an abbreviated primer on hardware designs at the

register transfer level [37]. We end with a description of the

symbolic execution of hardware designs.

3.1 Symbolic Execution

In software symbolic execution, the input values are replaced

with symbolic representations of the set of possible values

in the domain of the function. As execution continues the

symbols are used in place of concrete values. In addition to

the symbolic values, a path condition π is associated with

the current path of execution. When execution begins π :=

True. When a conditional branch is reached the condition p

is evaluated. If π → p, the then branch is taken. If π → ¬p,
the else branch is taken. If neither implication holds then

both branches are possible. Execution forks and each path is

explored in turn. The path condition is updated: π := π ∧ p

for the then branch and π := π ∧¬p for the else branch of

execution.

The symbolic exploration of a program can be represented

as a tree. Each node represents a line of code in the pro-

gram and has a path condition associated with it. Each path

through the tree represents a path of execution taken during

the symbolic exploration.

reg [1:0] count;

always @(posedge clk)

if (reset)

count <= 0;

else if (count == 0)

count <= {count[0], 1'b1};

else

count <= {count[0], 1'b0};

end

Listing 1. An example of sequential block in Verilog.

3.2 Register Transfer Level Hardware Designs

The hardware designs we are targeting are specified at the

register transfer level. A register transfer level design spec-

ifies the flow of data and connecting logic between state-

holding elements of the design. The designs we are inter-

ested in are implemented in a hardware description language.

To make our conversation concrete, we use one such hard-

ware description language, Verilog, in our examples [34].

The ideas generalize for other hardware description languages.

A basic unit of design in Verilog is a module. One module

may implement, for example, an arbiter for bus communi-

cation or the pipeline logic of a CPU. Modules can contain

other modules, making the design hierarchical. A module

combines multiple sub-modules by making the output sig-

nals of one module connect to the input signals of a second

module, with possibly some connecting logic in between.

The variables of a module are input wires, intermediate

regs and wires, and output regs and wires. The body of

the module consists of assignments to the intermediate and

output regs and wires. A variable of type wire can not

hold state and must be continually driven. Variables of type

reg, on the other hand, can hold state. Assignments to regs

are grouped in always blocks, and these may be sequen-

tial (stateful) or combinational (stateless) assignments. The

value of a reg assigned in a combinational block changes

as soon as any of the inputs to the block change value. The

value of a reg assigned in a sequential block changes only

at time-delta boundaries (e.g., only on the rising edge of a

clock signal) and otherwise maintains its current value (its

state) between deltas (see Listing 1). 1

3.3 Hardware-Oriented Symbolic Execution

We can now describe the symbolic execution of hardware

designs.

Definition 3. Let E be a directed rooted tree representing

the symbolic exploration of the processor design. Each node

of the tree n = (s̄, π) is a tuple representing a point in the

symbolic exploration of the design, where

1We can now be more specific about what we mean by a processor state s

in our model of a processor. A state s ∈ S represents a concrete valuation

of all reg signals that are assigned in sequential always blocks.

FMS’18, June 18, 2018, Philadelphia, PA, USA Rui Zhang and Cynthia Sturton

• s̄ is the current symbolic state of the processor, and

• π is the path constraint associated with the current point

of execution.

The symbolic state s̄ is a (partially) symbolic valuation of

the variables of the processor design. At any point of execu-

tion each variable may have a symbolic or concrete value.

The path constraint π is a boolean formula over the inter-

nal and input variables of the design.

The root node nr = (s̄r , πr) represents a (partially) sym-

bolic state of the processor at a clock cycle boundary and

always has path constraint πr := True.

A leaf node nl = (s̄l , πl) represents a symbolic next-state—
the state at the next clock cycle boundary—of the processor.

A particular path in E from nr to nl corresponds to a par-
ticular evolution of the processor in one clock cycle and is
prescribed by the constraints πl : if these constraints over the
internal and input variables are satisfied, the processor will
always follow the same path from nr to nl . In our analysis
we are concerned with the state of the processor at clock-
cycle boundaries; these are the states represented by the
root or leaf nodes of a symbolic exploration tree.
Given a tree E we can reason about the set of processor

states and next-states represented by the root and leaf nodes
of the tree.We do this by applying the constraints in π to the
symbolically defined values in s̄ to produce a set of concrete
states. We use the notation s̄ ◦ π to represent such a set.

Definition 4. Let E represent the symbolic exploration of
one clock cycle of a processor modeled by M. Let nr =
(s̄r , πr) be the root node of tree E and let nl = (s̄l , πl) be
a leaf node of the same tree. Then s̄r ◦ πl represents the set
of concrete states, and s̄l ◦ πl represents the set of concrete
next-states, that are at the end-points of the path from nr to
nl .

For example, if count is made symbolic (count := α), as
shown in Listing 1 and Figure 1, then by the time execu-
tion reaches the leaf node, it might have value count =

((α&1) ≪ 1)&3, as shown in the right leaf node of Fig-
ure 1. If the constraint given by πl is α , 0, then s̄r ◦ πl
produces the set of concrete states {count := 1, count :=

2, count := 3}, and s̄l ◦πl produces the set of concrete next-
states {count := 0, count := 2}.

4 Generating Program Exploits

Wedescribe our strategy for generating exploit programs us-
ing symbolic execution. We first reframe the problem state-
ment in terms of symbolic execution trees and then describe
our algorithm for generating the necessary sequence of trees
recursively. We then provide details and introduce heuris-
tics for making the search feasible.

r

l l

π := (α != 0)

count := ((α&1)<<1)&3

{count := 0, count := 2}

ERR := 0

π := (α == 0)

count := (((α&1)<<1)+1)&3

{count := 1}

ERR := 1

count == 0 ?

π := T

count := α

1 clock cycle

Figure 1. Symbolic exploration tree of Listing 1.

4.1 Using Symbolic Execution

Recall that we wish to generate a sequence of inputs that
will take the processor from the reset state to an error state.

Strategy Given EA, a set of error states of the processor
modeled byM, find a sequence of symbolic exploration trees
E0, E1, . . . , Em , and for each tree an identified leaf node

nl,0,nl,1, . . . ,nl,m , such that
1. s0 ∈ s̄r ,0 ◦ πl,0,
2. EA ∩ s̄l,m ◦ πl,m , {},
3. s̄l, j ◦ πl, j ⊆ s̄r , j+1 ◦ πl, j+1.
The first requirement states that the concrete initial state

s0 of the processor (the reset state) is in the set of concrete
states defined by applying πl,0 to s̄r ,0 of the first tree in the
sequence, E0.
The second requirement states that the set of concrete

states s̄l,m ◦ πl,m of the identified leaf node of the last tree
in the sequence (nl,m) includes desired error states.
The third requirement states that for 0 ≤ j ≤ m − 1, the

identified leaf node of tree Ej can be a starting point (root
node) for the path identified in tree Ej+1.
If the above requirements are met then the sequence of

path constraints πl,0, πl,1, . . . , πl,m provided by the sequence
of identified leaf nodesnl,0,nl,1, . . . ,nl,m define the sequence
of inputs to the processor that will take the processor from
the initial state to an error state.

4.2 Recursive Algorithm

We recursively generate the desired sequence of trees and
identified leaf nodes. Using this strategy, the problem of pro-
ducing a particular sequence of trees and identified leaf nodes
is reduced to producing, in each iteration, a single tree and
identified leaf node.
In the base case the algorithm looks for a symbolic exe-

cution tree Em with identified leaf node nl,m in which the
symbolic state s̄l,m , when constrained by πl,m , represents a
set of states that includes an error state se ∈ EA. This en-
sures by construction that the second requirement of our
strategy is met.

A Recursive Strategy for Symbolic Execution to ... FMS’18, June 18, 2018, Philadelphia, PA, USA

Algorithm 1: Recursively Generate the Input Se-
quence

Input : Initial States SI , Error States SE
Output : Input Vector ®i

1 Function FindInputs(s , ®i)

2 if ∃i ∈ I , s0 ∈ SI s.t. s = δ (s0, i) then

3 return i : ®i ;

4 else

5 if ∃i ∈ I , s ′ ∈ S s.t. s = δ (s ′, i) then

6 FindInputs(s ′, i : ®i) ;

7 else

8 return ERROR ;

9 end

10 end

11 Function main(SI , SE)

12 if ∃se ∈ SE s.t. se ∈ SI then

13 return (se , ϵ) ;

14 else

15 FindInputs(se , ϵ) ;

16 end

At each iteration the algorithm checks whether the re-
set state is in the set s̄r ◦ πl of the current tree. If so, the
first requirement is met and the algorithm has completed
the search successfully. If not, a new “error” state is defined
that will enforce the third requirement and the algorithm is
called recursively.
Algorithm 1 shows the pseudo-code of the recursive algo-

rithm. The algorithm takes initial states and error states of
the processor as inputs, and outputs a vector of generated
inputs to the processor. It starts from an error state se . If se
is in the set of initial states SI , the algorithm stops; other-
wise, it uses symbolic execution and searches, starting from
a fully symbolic state, for a path to the error state se in a
single clock cycle.
In the FindInputs function, if the algorithm finds an in-

put i that can transit the processor from an initial state s0 to
the current error state s , the search is finished and the algo-

rithm outputs the vector ®i. Otherwise, if the algorithm finds
an input i that can transit the processor from a state s̄ to
the current error state s , it sets s̄ as the new error state, and
recursively finds previous inputs. If no inputs can be found,
the algorithm returns ERROR.

4.3 Managing Complexity

In order to meet the third requirement of our strategy, we
would ideally find all possible leaf nodes in tree Ej−1 that
are consistent with the path identified in tree Ej . However,
the complexity of this method is similar to forward symbolic
execution (as discussed below). Themore cycleswe symboli-
cally execute, the longer the path constraints will be and the

more complicated the queries will be to the SMT solver. We
adopt a light-weight approach, sacrificing completeness for
speed: after each iteration, we find concrete valuations to a
subset of the stateful variables and use these conrete values
to partially define the state to search for in the next iteration.
This will no doubt lead us to miss some possible violating
paths. In practice, we can iterate, incrementally replacing
concrete values with constrained symbols if no assertion vi-
olations are found.
In forward symbolic execution, in the first clock cycle, a

tree with Nf leaves will be explored. In the second clock cy-
cle, the whole tree must be explored again, once for each of
the Nf leaves. Exploring forward M clock cycles has com-

plexity O(NM
f
). Finding the desired sequence of trees us-

ing forward symbolic execution suffers from an exponen-
tially growing set of states to explore and long queries to
the solver.
The complexity for the recursive strategy with symbolic

execution isO(Nb ·M), whereM is the number of cycles to
execute. Note that the Nb here is larger than the Nf in for-
ward symbolic execution because the internal variables are
made symbolic (as opposed to only input variables) which
increases the number of paths to explore. On the other hand,
in general only j < Nb paths are explored because explo-
ration stops once the desired identified leaf node is found.
Compare this to forward symbolic execution in which all
paths must be explored through multiple clock cycles until
one path is found that reaches the final error state. Although
the recursive strategy imposes some additional overhead, it
is overall more efficient because it can prune many of the
repeated paths compared to forward symbolic execution.

4.4 Convergence Toward Reset

There is no guarantee that the search will converge to the
initial state, s0. In order to steer the search toward s0, we
provide two heuristics to identify and eliminate paths that
are less likely to lead back to s0.

Distance from Reset We found that a particular state is
more likely to be reachable from reset within a few clock
cycles if the empirical distance of that state from the reset
state is small.
We define the empirical distance between two states as

a count of stateful regs whose valuations differ in the two
states. Specifically, we can represent a processor state s as
a vector of bitstrings s = 〈r0, r1, . . . , r |s |〉 where each ri is a
stateful reg of the design. Empirical distance between two
states s1 and s2 is calculated by:

d(s1, s2) �

|s |∑

i=0

(ITE(r 1i , r 2i , 1, 0)), (3)

where r 1 is a stateful reg of s1, r
2 is a stateful reg of s2,

and |s | is the number of stateful regs in any state.

FMS’18, June 18, 2018, Philadelphia, PA, USA Rui Zhang and Cynthia Sturton

assign a_lt_b = comp_op[3] ? ((a[width-1] & !b[width-1]) |

(!a[width-1] & !b[width-1] & result_sum[width-1]) |

(a[width-1] & b[width-1] & result_sum[width-1])) :

(a < b); // Bug Free Version

result_sum[width-1]; // Buggy Version

Listing 2. A control flow related security-critical bug from
OR1200 processor Bugzilla.

l.movhi r16 0x8000

l.nop

l.sfgtu r16 r0

Listing 3. The exploit program generated by the recursive
searching symbolic execution engine.

We set a threshold 0 < k < |s | and at each iteration j , we
choose a concrete valuation s from s̄r , j ◦ πl, j and calculate
the empirical distance d(s, s0) between the chosen concrete
state and the reset state. If the distance is above the thresh-
old, we abort the current iteration, back track to the previ-
ous iteration, and choose a different node nl . Otherwise, we
continue with our recursive search.

Loops At each new iteration j , the set of processor states
possible for step j may include states found in previous it-
erations, in which case the search may have entered a loop.
Let S j = s̄r , j ◦πl, j be the set of possible concrete states found
in iteration j and let S j+1−m be the set of possible concrete
states found in iterations j + 1 through m. There are four
possibilities:
• S j = S j+1−m
• S j ⊂ S j+1−m
• S j ⊃ S j+1−m
• S j ∩ S j+1−m = {}

In any of the first three cases, there is the possibility that
we are searching in a loop, and will never reach the reset
state. To guard against this, while keeping the complexity of
our strategy feasible, we introduce the following heuristic.
In the first iteration, we define the set Sm = {sm}, where sm
is the chosen concrete valuation for the last tree Em in our
sequence of trees. In each subsequent iteration j , we first
choose the concrete valuation sj and then check whether
sj ∈ Sm . If it is, we continue the symbolic execution until we
find an sk , such that sk < Sm , and we update our set: Sm :=

Sm ∪ {sk }. Otherwise we update our set: Sm := Sm ∪ {sj }

and continue.

5 Case Study: OR1200 processor

In this section, we demonstrate the use of our recursive
strategy with hardware-oriented symbolic execution to gen-
erate replayable exploits for three security vulnerabilities

in the OR1200 processor. The OR1200 processor is an open-
source 32-bit implementation of the OpenRISC 1000 archi-
tecture with Harvard microarchitecture, 5-stage integer
pipeline, virtual memory support, and basic DSP capabili-
ties. It is popular in research prototypes and it has been used
in commercial products.
We implement our recursive algorithm using KLEE [14],

a mature symbolic execution engine, as the base. We first
use Verilator [4], a simulation tool, to translate the proces-
sor source code, which is written in Verilog or SystemVer-
ilog, to C++.We then add the security-critical assertions col-
lected from prior work [21, 40] to the design and compile the
newly translated design to LLVM bytecode using the Clang
compiler [1]. Finally, we run the design on our modified ver-
sion of KLEE to generate exploits. The experiments are per-
formed on a machine with Intel Xeon E5-2620 V3 12-core
CPU (2.40GHz) and 62G of RAM.

5.1 A Control Flow Bug

Listing 2 shows a security-critical bug from OR1200 proces-
sor Bugzilla (Bugzilla #51 [2]). The code snippet is from the
ALU module in the OR1200 processor. It shows the logic to
determine whether operand a is less than operand b. For
most cases, the implementation of a_lt_b works correctly,
but the bug introduces an error for the l.sfgtu instruc-
tion. According to the OpenRISC specification [26], for the
l.sfgtu instruction (l.sfgtu rA rB), the contents of general-
purpose register rA and rB are compared as unsigned inte-
gers. If the contents of the first register are greater than the
contents of the second register, the compare flag is set; oth-
erwise the compare flag is cleared. However, with this bug,
if the highest bit in register rA is 1, even if rA is greater than
rB, the compare flag will not be set. In this way, the attacker
can control which branch to execute.
The security-critical bug violates the security-critical as-

sertion that the comparison flag should be set correctly. We
add the security-critical bug back to the OR1200 processor
and the security-critical assertions to the design. We then
run our symbolic execution engine with recursive search
strategy. Listing 3 shows the generated exploit that triggers
the security bug.
The symbolic execution engine first sets all the inputs and

stateful signals to symbolic values. It runs and searches for
an assertion violation on the whole processor design. In the
first iteration, the generated instruction is: l.sfgtu r16

r0. The stateful regs that do not have their reset valuation
are: GPR16, and pcreg_select. The engine then sets these
two values as a new assertion for the second iteration. The
second instruction it generates is: l.nop. The stateful reg
that does not have its reset valuation is: GPR16. The engine
then sets this value as a new assertion for the third iteration.
The third instruction generated is: l.movhi r16 0x8000.
All stateful regs have their reset valuation now. The engine

A Recursive Strategy for Symbolic Execution to ... FMS’18, June 18, 2018, Philadelphia, PA, USA

always @(posedge clk) begin

if (!id_flushpipe & !id_freeze)

sp_return_counter <= (sp_return_counter == 6'd50) ?

sp_return_counter : sp_return_counter + 6'd1;

end

......

assign if_insn = (sp_return_counter == 6'd50) ? {6'h11,

10'h0, 5'h9, 11'h0} : no_more_dslot | rfe | if_bypass ?

{`OR1200_OR32_NOP, 26'h041_0000} : saved ? insn_saved :

icpu_ack_i ? icpu_dat_i : {`OR1200_OR32_NOP, 26'h061_0000};

Listing 4. A security-critical bug about instruction in-
tegrity.

stops and outputs the generated instuctions reversely (List-
ing 3). The total CPU time required for generating this ex-
ploit is 9m40s. The exploit is replayable on an FPGA board.

5.2 An Instruction Integrity Bug

Listing 4 shows a security-critical bug from the SPECS
project [21]. This bug contaminates the instruction integrity
by modifying the instruction to be executed, and exits the
current program execution. The code snippets are from the
Instruction Fetch (or1200_if)module and theControl (or1200_ctrl)
module inOR1200 processor. The alwaysblock sets a counter
which counts the number of instructions that are executed
but not flushed away. If the number of instructions executed
reaches 50, the assign statement will modify the instruc-
tion that got fetched frommemory. In this example, the code
silently modifies the fectched instruction to l.jr r9, which
means jumping to the address stored in the link register
(r9). In this way, the attacker can return and exit the cur-
rent program execution regardless of the original instruc-
tion fetched from memory.
This bug violates the security property that instructions

should not be changed in the pipeline. Adding back the security-
critical bug and the corresponding security-critical asser-
tion, our recursive search with symbolic execution success-
fully generates an exploit program of 50 instructions. The
total CPU time required for generating this exploit is 2m29s.
The exploit is replayable on an FPGA board.

5.3 An Exception Related Bug

Listing 5 shows another security-critical bug from the SPECS
project [21]. This bug is related to exception handling. The
EPCR register in OR1200 processor stores the return address
for the exception handler, which is the program counter of
the current execution. This bugs modifies the EPCR to an ad-
dress of the attacker’s choice.With this bug, when returning
from the exception handler, the processor will jump to a ma-
licious address. As it is returning from the exception handler,
the processor is still in the high privilege. Thus, the attacker
can execute a piece of chosen code with high privilege. This

`ifdef OR1200_EXCEPT_SYSCALL

14'b00_0000_01??_????: begin

except_type <= `OR1200_EXCEPT_SYSCALL;

epcr <= ex_dslot ? // Bug Free Version

epcr <= 1'b1 ? 32'hdeadbeef : ex_dslot ? // Buggy

Version

wb_pc : delayed1_ex_dslot ?

id_pc : delayed2_ex_dslot ?

id_pc : id_pc;

Listing 5. A security bug related to exception handling.

bug violates the security property that privilege should es-
calate correctly.
With the security-critical bug and the assertion in the pro-

cessor design, our recursive algorithm with symbolic execu-
tion successfully generates an exploit program of 1 instruc-
tion. The exploit is replayable on an FPGA board. Note that
this bug cannot be found by the commercial model checking
tool, Cadence IFV.

6 Related Work

6.1 Weakest Precondition

Weakest precondition has been used for program verifica-
tion and vulnerability discovery [9, 11–13]. Theweakest pre-
condition for a program with respect to a vulnerability con-
dition is a boolean formula over the initial state which is
true for all inputs which cause the program to terminate in
a final state satisfying the vulnerability condition [13]. Our
calculation of preconditions at each iteration of the recur-
sive search is different from weakest precondition in that
we generate a per-path precondition rather than a single
boolean formula representing a precondition over thewhole
program.

6.2 Hardware Symbolic Simulation

Software symbolic execution [14–17, 20] explores program
paths with symbolic inputs [24]. Applying this technique to
hardware designs for verification and testing has also been
studied [30, 33]. STAR [30] is a functional input vector gen-
eration tool combining symbolic and concrete simulation
for RTL designs over multiple time frames. It provides high
range statements and branch coverage, but is limited by the
sequential depth [30]. PATH-SYMEX is a forward symbolic
execution engine that takes in ANSI-C interpretation of the
RTL code [33]. Its application is limited to small RTL de-
signs.

6.3 Backward Symbolic Execution in Software

Directed symbolic execution [31] and execution synthesis [38]
use guided symbolic execution to increase the probability of
executing paths of interest. In software, backward symbolic
execution has been studied to solve the goal-reachability

FMS’18, June 18, 2018, Philadelphia, PA, USA Rui Zhang and Cynthia Sturton

problem [31, 36]. Otter [31] developed the call-chain-backward
symbolic execution which begins at a target line and pro-
ceeds backward to the start state. Application to real-world
software raises many challenges such as complicated arith-
metic (such as floating point), external method calls, and
data dependent loops [19, 35, 36].

6.4 Typed Hardware Description Languages

A body of work has emerged on developing new or extend-
ing current hardware description languages for enforcing
security policies [18, 27, 28, 39]. Although these works can
prove that a hardware design meets the information flow se-
curity policies, they cannot verify those designs that are not
already implemented with these languages.

7 Conclusion

We have presented the formalization of the recursive strat-
egywith hardware-oriented symbolic execution to find, and
generate exploits for, vulnerabilities in hardware designs.
Our approach allows for a targeted recursive search through
a possibly infinite set of infinitely long possible execution
traces to find error states. We demonstrate the approach and
generate three exploit programs for security-critical bugs in
OR1200 processor, one of them cannot be found by the com-
mercial model checking tool, Cadence IFV.

Acknowledgments

We would like to thank the anonymous reviewers for their
helpful feedback. Thismaterial is based uponwork supported
by the National Science Foundation under Grant No. CNS-
1651276. Any opinions, findings, conclusions, and recom-
mendations expressed in this paper are solely those of the
authors.

References
[1] [n. d.]. Clang: a C language family frontend for LLVM. h�ps://clang.

llvm.org/

[2] [n. d.]. Comparison wrong for unsigned inequality with different

MSB. h�p://bugzilla.opencores.org/show_bug.cgi?id=51

[3] [n. d.]. Reading privileged memory with a side-channel. h�ps://

googleprojectzero.blogspot.com/2018/01/reading-privileged-

memory-with-side.html

[4] [n. d.]. Verilator. h�ps://www.veripool.org/wiki/verilator.

[5] 2013. Revision Guide for AMD Family 16h Models 00h-0Fh Proces-

sors. Product Revision (2013). h�p://support.amd.com/TechDocs/

51810_16h_00h-0Fh_Rev_Guide.pdf

[6] 2014. Intel Core i7-600, i5-500, i5-400 and i3-300 Mobile Processor

Series. Specification Update (2014). h�p://www.intel.com/content/

dam/www/public/us/en/documents/specification-updates/core-

mobile-spec-update.pdf

[7] 2015. Xen Security Advisory CVE-2015-5307,CVE-2015-8104 / XSA-

156. h�p://xenbits.xen.org/xsa/advisory-156.html.

[8] 2017. Intel Skylake/Kaby Lake processors: broken hyper-threading.

h�ps://lists.debian.org/debian-devel/2017/06/msg00308.html.

[9] Mike Barnett and K. Rustan M. Leino. 2005. Weakest-precondition

of Unstructured Programs. In Proceedings of the 6th ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and Engi-

neering (PASTE ’05). ACM, NewYork, NY, USA, 82–87. h�ps://doi.org/

10.1145/1108792.1108813

[10] ClarkW. Barrett, David L. Dill, and Aaron Stump. 2002. Checking Sat-

isfiability of First-Order Formulas by Incremental Translation to SAT.

In International Conference on Computer Aided Verification. Springer-

Verlag. h�p://theory.stanford.edu/~barre�/pubs/BDS02-CAV02.pdf

[11] D. Brumley, P. Poosankam, D. Song, and J. Zheng. 2008. Automatic

Patch-Based Exploit Generation is Possible: Techniques and Implica-

tions. In 2008 IEEE Symposium on Security and Privacy (sp 2008). 143–

157. h�ps://doi.org/10.1109/SP.2008.17

[12] David Brumley, Pongsin Poosankam, Dawn Song, and Jiang Zheng.

2008. Automatic Patch-Based Exploit Generation is Possible: Tech-

niques and Implications. In Proceedings of the 2008 IEEE Symposium

on Security and Privacy (SP ’08). IEEE Computer Society, Washington,

DC, USA, 143–157. h�ps://doi.org/10.1109/SP.2008.17

[13] David Brumley, Hao Wang, Somesh Jha, and Dawn Song. 2007. Creat-

ing Vulnerability Signatures UsingWeakest Preconditions. In Proceed-

ings of the 20th IEEE Computer Security Foundations Symposium (CSF

’07). IEEE Computer Society, Washington, DC, USA, 311–325. h�ps://

doi.org/10.1109/CSF.2007.17

[14] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unas-

sisted andAutomatic Generation of High-Coverage Tests for Complex

Systems Programs. In USENIX Symposium on Operating Systems De-

sign and Implementation (OSDI). h�p://klee.github.io/

[15] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and

Dawson R. Engler. 2006. EXE: Automatically Generating Inputs of

Death. In Proceedings of the 13th ACM Conference on Computer and

Communications Security (CCS). 322–335. h�p://doi.acm.org/10.1145/

1180405.1180445

[16] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David

Brumley. 2012. Unleashing Mayhem on Binary Code. In Proceedings

of the 2012 IEEE Symposium on Security and Privacy (SP ’12). IEEE

Computer Society, Washington, DC, USA, 380–394. h�ps://doi.org/

10.1109/SP.2012.31

[17] Drew Davidson, Benjamin Moench, Thomas Ristenpart, and Somesh

Jha. 2013. FIE on Firmware: Finding Vulnerabilities in Em-

bedded Systems Using Symbolic Execution. In Proceedings of the

22nd USENIX Security Symposium. USENIX, Washington, D.C., 463–

478. h�ps://www.usenix.org/conference/usenixsecurity13/technical-

sessions/paper/davidson

[18] Andrew Ferraiuolo, Rui Xu, Danfeng Zhang, Andrew C. Myers, and

G. Edward Suh. 2017. Verification of a Practical Hardware Security Ar-

chitecture Through Static Information Flow Analysis. In Proceedings

of the Twenty-Second International Conference on Architectural Sup-

port for Programming Languages and Operating Systems (ASPLOS ’17).

ACM, New York, NY, USA, 555–568. h�ps://doi.org/10.1145/3037697.

3037739

[19] Arnaud Gotlieb Florence Charreteur. 2010. Constraint-Based Test In-

put Generation for Java Bytecode. In Proceedings of the 2010 IEEE 21st

International Symposium on Software Reliability Engineering. ACM,

131–140.

[20] Patrice Godefroid, Michael Y. Levin, and David Molnar. 2012. SAGE:

Whitebox Fuzzing for Security Testing. Queue 10, 1, Article 20 (Jan.

2012), 8 pages. h�ps://doi.org/10.1145/2090147.2094081

[21] Matthew Hicks, Cynthia Sturton, Samuel T. King, and Jonathan M.

Smith. 2015. SPECS: A Lightweight Runtime Mechanism for Protect-

ing Software from Security-Critical Processor Bugs. In Proceedings of

the Twentieth International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS ’15). ACM,New

York, NY, USA, 517–529. h�ps://doi.org/10.1145/2694344.2694366

https://clang.llvm.org/
https://clang.llvm.org/
http://bugzilla.opencores.org/show_bug.cgi?id=51
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://www.veripool.org/wiki/verilator
http://support.amd.com/TechDocs/51810_16h_00h-0Fh_Rev_Guide.pdf
http://support.amd.com/TechDocs/51810_16h_00h-0Fh_Rev_Guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/core-mobile-spec-update.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/core-mobile-spec-update.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/core-mobile-spec-update.pdf
http://xenbits.xen.org/xsa/advisory-156.html
https://lists.debian.org/debian-devel/2017/06/msg00308.html
https://doi.org/10.1145/1108792.1108813
https://doi.org/10.1145/1108792.1108813
http://theory.stanford.edu/~barrett/pubs/BDS02-CAV02.pdf
https://doi.org/10.1109/SP.2008.17
https://doi.org/10.1109/SP.2008.17
https://doi.org/10.1109/CSF.2007.17
https://doi.org/10.1109/CSF.2007.17
http://klee.github.io/
http://doi.acm.org/10.1145/1180405.1180445
http://doi.acm.org/10.1145/1180405.1180445
https://doi.org/10.1109/SP.2012.31
https://doi.org/10.1109/SP.2012.31
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson
https://doi.org/10.1145/3037697.3037739
https://doi.org/10.1145/3037697.3037739
https://doi.org/10.1145/2090147.2094081
https://doi.org/10.1145/2694344.2694366

A Recursive Strategy for Symbolic Execution to ... FMS’18, June 18, 2018, Philadelphia, PA, USA

[22] K. Karnane and C. Goss. 2015. Automating root-cause analysis to re-

duce time to find bugs by up to 50%. Technical Report. Cadence De-

sign Systems. www.cadence.com/rl/Resources/whitepapers/indago_

debug_platform_wp.pdf

[23] James C. King. 1976. Symbolic Execution and Program Testing. Com-

mun. ACM 19, 7 (July 1976), 385–394. h�ps://doi.org/10.1145/360248.

360252

[24] James C. King. 1976. Symbolic Execution and Program Testing. Com-

mun. ACM 19, 7 (July 1976), 385–394. h�p://doi.acm.org/10.1145/

360248.360252

[25] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike

Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael

Schwarz, and Yuval Yarom. 2018. Spectre Attacks: Exploiting Specu-

lative Execution. ArXiv e-prints (Jan. 2018). arXiv:1801.01203

[26] Damjan Lampret. 2014. OpenRISC 1000 Architecture Man-

ual. h�ps://github.com/openrisc/doc/blob/master/openrisc-arch-1.1-

rev0.pdf?raw=true.

[27] Xun Li, Vineeth Kashyap, Jason K. Oberg,Mohit Tiwari, Vasanth Ram

Rajarathinam, Ryan Kastner, Timothy Sherwood, Ben Hardekopf, and

Frederic T. Chong. 2014. Sapper: A Language for Hardware-level

Security Policy Enforcement. In Proceedings of the 19th International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’14). ACM, New York, NY, USA, 97–112.

h�ps://doi.org/10.1145/2541940.2541947

[28] Xun Li, Mohit Tiwari, Jason K. Oberg, Vineeth Kashyap, Frederic T.

Chong, Timothy Sherwood, and Ben Hardekopf. 2011. Caisson: A

Hardware Description Language for Secure Information Flow. In Pro-

ceedings of the 32Nd ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI ’11). ACM, New York, NY,

USA, 109–120. h�ps://doi.org/10.1145/1993498.1993512

[29] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,

Werner Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval

Yarom, and Mike Hamburg. 2018. Meltdown. ArXiv e-prints (Jan.

2018). arXiv:1801.01207

[30] Lingyi Liu and Shabha Vasudevan. 2009. STAR: Generating input vec-

tors for design validation by static analysis of RTL. In IEEE Interna-

tional Workshop on High Level Design Validation and Test Workshop.

IEEE, 32–37.

[31] Kin-Keung Ma, Khoo Yit Phang, Jeffrey S. Foster, and Michael Hicks.

2011. Directed Symbolic Execution. In Proceedings of the 18th Inter-

national Static Analysis Symposium, Eran Yahav (Ed.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 95–111. h�ps://doi.org/10.1007/978-

3-642-23702-7_11

[32] Djordje Maksimovic. 2015. Novel Directions in Debug Automation for

Sequential Digital Designs in a Modern Verification Environment. Mas-

ter’s thesis. University of Toronto, Canada.

[33] Rajdeep Mukherjee, Daniel Kroening, and Tom Melham. 2015. Hard-

ware Verification using Software Analyzers. In Proceedings of the IEEE

Computer Society Annual Symposium on VLSI (ISVLSI). IEEE.

[34] Samir Palnitkar. 2003. Verilog®Hdl: A Guide to Digital Design and Syn-

thesis, Second Edition (second ed.). Prentice Hall Press, Upper Saddle

River, NJ, USA.

[35] Gul Agha Peter Dinges. 2004. Targeted test input generation us-

ing symbolic-concrete backward execution. In Proceedings of the 29th

ACM/IEEE international conference on Automated software engineering.

ACM, 31–36.

[36] S. J. Fink S. Chandra and M. Sridharan. 2009. Snugglebug: a powerful

approach to weakest preconditions. In Proceedings of the 2009 ACM

SIGPLAN conference on Programming language design and implemen-

tation. ACM, 363–374.

[37] Frank Vahid. 2010. Digital Design with RTL Design, Verilog and VHDL

(2nd ed.). Wiley Publishing.

[38] Cristian Zamfir and George Candea. 2010. Execution Synthesis: A

Technique for Automated Software Debugging. In Proceedings of the

5th European Conference on Computer Systems (EuroSys). 321–334.

h�p://doi.acm.org/10.1145/1755913.1755946

[39] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. My-

ers. 2015. A Hardware Design Language for Timing-Sensitive

Information-Flow Security. In Proceedings of the Twentieth Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS ’15). ACM, New York, NY, USA, 503–

516. h�ps://doi.org/10.1145/2694344.2694372

[40] Rui Zhang, Natalie Stanley, Christopher Griggs, Andrew Chi, and

Cynthia Sturton. 2017. Identifying Security Critical Properties for

the Dynamic Verification of a Processor. In Proceedings of the Twenty-

Second International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS ’17). ACM,NewYork,

NY, USA, 541–554. h�ps://doi.org/10.1145/3037697.3037734

www.cadence.com/rl/Resources/whitepapers/indago_debug_platform_wp.pdf
www.cadence.com/rl/Resources/whitepapers/indago_debug_platform_wp.pdf
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
http://doi.acm.org/10.1145/360248.360252
http://doi.acm.org/10.1145/360248.360252
http://arxiv.org/abs/1801.01203
https://github.com/openrisc/doc/blob/master/openrisc-arch-1.1-rev0.pdf?raw=true
https://github.com/openrisc/doc/blob/master/openrisc-arch-1.1-rev0.pdf?raw=true
https://doi.org/10.1145/2541940.2541947
https://doi.org/10.1145/1993498.1993512
http://arxiv.org/abs/1801.01207
https://doi.org/10.1007/978-3-642-23702-7_11
https://doi.org/10.1007/978-3-642-23702-7_11
http://doi.acm.org/10.1145/1755913.1755946
https://doi.org/10.1145/2694344.2694372
https://doi.org/10.1145/3037697.3037734

	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Threat Model
	2.2 Definitions and Notation

	3 Symbolic Execution of Hardware Designs
	3.1 Symbolic Execution
	3.2 Register Transfer Level Hardware Designs
	3.3 Hardware-Oriented Symbolic Execution

	4 Generating Program Exploits
	4.1 Using Symbolic Execution
	4.2 Recursive Algorithm
	4.3 Managing Complexity
	4.4 Convergence Toward Reset

	5 Case Study: OR1200 processor
	5.1 A Control Flow Bug
	5.2 An Instruction Integrity Bug
	5.3 An Exception Related Bug

	6 Related Work
	6.1 Weakest Precondition
	6.2 Hardware Symbolic Simulation
	6.3 Backward Symbolic Execution in Software
	6.4 Typed Hardware Description Languages

	7 Conclusion
	Acknowledgments
	References

