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Abstract—Deployed embedded software interacts
with sensors and actuators to control a physical envi-
ronment. While the evolution of the control system is
specified by Ordinary Differential Equations (ODEs),
the embedded software periodically senses the state
of the system, performs computation over the inputs,
and initiates the actuators based on the result of com-
putation. In this paper, we present a bounded time
safety verification technique for periodically actuated
linear control systems. The model considered in this
paper takes into account that the control tasks are
executed on a real time operating system and hence the
task, in some instances misses the real time deadlines.
Using matrix exponentiation, and symbolic evaluation
of inputs, we reduce the verification problem of such
systems into software verification with computation
over reals. We compare different techniques for veri-
fying such software, highlight the merits of each of the
approaches, and present our experimental results.

I. Introduction
Software controlling physical processes often execute on

embedded platforms to achieve a number of safety critical
tasks, like braking, fuel injection, and stability control in
automotive systems. The evolution of the physical process
is governed by ordinary differential equations/inclusions,
and the software senses the physical state through sen-
sors, and controls the physics by setting the parameters
of actuators. The execution platform for such systems
is often uni-processor, but it nonetheless runs several
applications “concurrently”. The presence of competing
claims to processing time, introduces variability in the
controller software’s response time due to blocking, and
preemption enforced by a scheduling policy. These timing
effects, though critical to the functional correctness of the
controller, are often ignored during design and analysis,
wherein one assumes sensing without jitter, and actuation
without delay.

The variability in the execution time of the control soft-
ware makes design and analysis of such systems extremely
challenging. To limit the nondeterminism in the timing
behavior, several people have advocated a design and
execution model that enforces determinism by combining
timing analysis of the software with logical execution time
(LET) [20]. In this model [27], [32], the physical plant is
sensed periodically at a fixed period, new inputs to the

actuator are computed, and physical process is actuated
at a fixed W time units after the start of the period; here
W is taken to be a bound on the worst-case execution time
(WCET) of sensing, computation, and actuation. More
recently [17], it has been argued that since WCET analysis
can be extremely conservative, it is better to instead to
use typical worst-case analysis (TWCA) instead. In such a
model, the actuation time of the physical process is taken
to be TWCRT (typical worst-case response time) of the
controller. If the sensing, computation, and actuation in a
certain period takes longer than the computed TWCRT,
then the physical process is not actuated in that cycle, and
the process evolves according to the inputs computed in
the previous cycle; the TWCA ensures that such “missed
deadlines” are rare, well understood, and is captured in
the formal model of the system that is analyzed.

In this paper, we consider the problem of verifying
safety properties of controller software operating in the
execution environment outlined above. In [17], the anal-
ysis was carried out by modeling the physical process,
controller software, sensing and actuating timing model
as a single closed loop hybrid automaton [19], and then
performing reachability analysis using a model checker like
SpaceEx [16]. However, such an analysis can be overly
conservative, as we illustrate through an example.

Motivating Example: [Adaptive Cruise Control System]
Consider two cars in a leader-follower system where the
leading car is moving at a constant speed vf and the
trailing car senses the environment variables, namely the
separation between the two cars s, its velocity v, and its
acceleration a. The trailing car uses an automatic cruise
control mechanism for maintaining safe separation with
the leading car. The control program computes the output,
namely, the rate of change of acceleration. The differential
equations with inputs for such system is given as:

ṡ = (vf − v)
v̇ = a− kaero × v
ȧ = u

In [30], the authors provide a feedback law that requires
sensing all the continuous variables and prove that it is



[v_s,a_s,vf_s] = sense_environment();
u = -2*a_s -2*(v_s - vf_s); // feedback law

actuate_system(u);

Fig. 1: Controller for an adaptive cruise control system.

safe. Consider a modification of the control law which
requires sensing only the acceleration and velocity, since
u = −2a − 2(v − vf ) depends only on the acceleration
and velocity. One can verify the safety of the new control
law using similar techniques stated in [30], however, in
practice, the control mechanism applied is not continuous.
The control program that periodically senses values of v,
vf and a to compute the output u for every time period
T is given in Figure 1

Fig. 2: Figure depict-
ing the hybrid automaton
model for the periodically
actuated system.

For simplicity, let us assume
that the actuation time is actually
the WCET (and not TWCRT)
with instantaneous sensing, actu-
ation, and computing. Hence, the
system is actuated for the time
period (T = 0.01) with the val-
ues of actuation parameters that
are computed at the beginning of
the time period. Hybrid automa-
ton that models such periodically
actuated systems is given in Fig-
ure 2. One technique for analyz-
ing such systems is to compute
reachable set using state of the art
tools such as SpaceEx. The result
of verifying hybrid automaton in
Figure 2 using support functions
in SpaceEx [16] is given in Figure 3.

Fig. 3: Figure depicting the
reachable set of states com-
puted by SpaceEx (in blue)
and the set of states obtained
by 1000 sampled simulations
(in red).

The simulations indicate sta-
ble behavior of the system
but the reachable set computes
a coarse overapproximation of
the reachable set of states. To
understand why such analysis
so conservative, let us inspect
how it works on this exam-
ple. The reachable set com-
putation algorithm performs
the following operations itera-
tively. Assuming that the set
of states reachable within time
kT (ReachSet) has been com-
puted, the algorithm will com-
pute the set of inputs Uk =
{u = −2a−2(v−vf ) | 〈s, v, a〉 ∈
ReachSet}, for the next inter-
val [kT, (k+ 1)T ], and compute all states reachable in the
time interval [kT, (k + 1)T ] for this set of inputs.

Consider two states 〈s1, v1, a1〉 and 〈s2, v2, a2〉 in

ReachSet and let u1 = −2a1−2(v1−vf ) and u2 = −2a2−
2(v2 − vf ) be their corresponding inputs according to the
control law. The reachability computation technique, by
computing the set Uk, applies both the inputs u1 and u2
to both the states 〈s1, v1, a1〉 and 〈s2, v2, a2〉 to compute
an overapproximation of the reachable set for time interval
[kT, (k+1)T ], which results in a coarse overapproximation.
However, it suffices to apply the input u1 to the state
〈s1, v1, a1〉 and u2 to the state 〈s2, v2, a2〉. Current hybrid
system verification tools do not preserve this relationship
between the inputs and their corresponding states.

In this paper, we propose a technique for analyzing real
time linear control systems where the dynamics of the
plant are given as linear ODEs. In order to handle the
challenges of the reachability approach and improve the
efficiency of verification, we reduce the problem to software
verification with computation over reals. We make the
following observations that aid in the reduction procedure:
First, in order to handle the inputs efficiently, we consider
inputs as symbolic functions of the state variables and
preserve the relation between inputs and the state of the
system. Second, we observe that control software running
on a real time operating system can be analyzed as
piecewise affine systems. Third, the closed form solution
for piecewise affine systems can be obtained by computing
fixed matrix exponential, resulting in a linear function
that can be efficiently analyzed. Finally, we observe that
the timing behaviors of such control tasks can be encoded
as a series of if-then-else statements in a program and hence
the verification of closed loop linear control system can be
reduced to the software verification problem. This reduc-
tion has the advantage that we can use traditional software
analysis techniques to address the problem. Further we
are no longer confined to only analyzing the system for
bounded time. Abstract interpretation or loop invariant
based verification techniques could potentially be used for
checking the safety of the system for unbounded time1.
We conclude this section by observing that though the
physical plant dynamics are assumed to be given by linear
ODEs, the systems we analyze are not purely linear. This
is because the controller software could have nonlinear
operations. Thus, certain nonlinear dynamical systems
with continuous feedback can be analyzed in our setup.

We have built a prototype tool based on these ideas.
We analyze the transformed software that we construct
for linear control systems, using abstract interpretation
and satisfiability modulo theories (SMT). Our preliminary
experimental results show that approach analyzes systems
quickly. It also highlights the relative merits of abstract
interpretation and SMT in this context.

1Reachable set computations can sometimes converge to a fix-
point, and then be able to prove safety for an unbounded time.
However, they typically don’t try to overapproximate, like widening
in abstract interpretation and loop invariant synthesis, and therefore,
are not engineered to reach a fix-point.



Fig. 4: Picture representing the real time control task. The first two instances of task, the computation deadline is
met, the third instance the computation misses the deadline and the new actuation values are not provided to the
environment.

II. Preliminaries
A. Execution Model

The controller software is assumed to run on an em-
bedded uni-processor platform that has other applications
running as well. The controller needs to sample the state
of the physical process through sensors so that the right
actuator parameters can be set to control the physical
plant. The competition for resources causes sampling jit-
ter (varying time for the sensor data to be read by
the software) and response time jitter (varying time for
the software to compute the actuator parameters). It is
important to account for these timing effects, but these
variations make the design and analysis very complicated.

In order to reduce the nondeterminism in the timing
behavior, several authors have proposed to exploit timing
analysis with logical execution times (LET). Recently [17],
a model combining TWCA and LET has been proposed
as an appropriate model for industrial control software. In
this model the control software is executed periodically,
every T time units, as shown in Figure 4. Typical worst-
case analysis (TWCA) of the software obtains a typical
worst-case response time (TWCRT) W , and error bounds
on the number of violations of the TWCRT within a given
time window. At the start of every period, the state of
the physical process is sensed, new actuator parameters
are computed based on the physical state sensed, and the
new input parameters are actuated at time W , provided
the sensing and computation take less than W time (time
periods 1 and 2 in Figure 4). If sensing and computation
take longer thanW units, then the current computation is
discarded, and the inputs computed in the previous time
period continue to control the physical plant (time period
3 in Figure 4); how frequently such misses can happen can
be obtained from the TWCA, and this is captured in the
formal model that is analyzed.

B. Physical Process Model
The dynamics of the physical process being controlled

by the software will be assumed to be governed by a
ordinary differential equation (ODE). In this paper, we
consider the system to be a linear differential equation as

given in Equation 1 where x, an element in Rn represents
the state of the environment/physical process and u, an
element in Rm, represents its inputs/actuator parameters.

ẋ = Ax+Bu. (1)

The solution of ODE in Equation 1 is given as a
function ξ : Rn × Rm × R≥0 → Rn which satisfies the
condition: ∀x0 ∈ Rn and ∀u ∈ Rm, ∀t > 0, d

dtξ(x0, u, t) =
Aξ(x0, u, t) + Bu. Such function is called a solution or a
trajectory . For linear ODEs, the closed form expression
for the trajectory is given as:

ξ(x0, u, t) = eAtx0 +
t∫

0

eA(t−τ)Budτ. (2)

where eAt is the matrix exponential. A trajectory ξ defined
over a finite time horizon [0, tf ], is said to be a finite tra-
jectory where tf is denoted as ξ.dur. For finite trajectories,
the state ξ(x0, u, 0) is denoted as ξ.fstate and ξ(x0, u, tf )
is denoted as ξ.lstate. An execution of the environment is
obtained by concatenating two or more finite trajectories.
The inductive definition of an execution is given as:
Base Case: α = ξ, where the duration of α is defined as

α.dur = ξ.dur and the state at time t as α(t) = ξ(t).
Inductive Case: α = α1 · ξ with α.dur = α1.dur + ξ.dur

and α(t) = if (t < α1.dur) then α1(t) else ξ(t −
α1.dur).

The first and last states of an execution, denoted by
α.fstate and α.lstate are defined similarly. One can intu-
itively think of a trajectory as the behavior of system 1
with constant input, and an execution as the behavior of
system 1 with piecewise constant inputs with possible dis-
continuities in environment due to autonomous or impulse
transitions.

C. Controller Software
A control program has three types of variables given

as follows: v denote its internal variables, xs denote the
variables that store the sensor recordings of environment,
and uout denote output variables that act as actuation
values to the environment. In an execution of the control



control_program ::=
<initialize v>
while(true)

x_in = sense_environment(); // Sensing
Stmt+ // Computation
actuate_system(u_out); // Actuation

endwhile;

Fig. 5: Structure of control programs considered in this pa-
per; sense_environment and actuate_system are
special functions for sensing and actuation.

Stmt ::= var <ID>;
| ID = RealExpr;
| if (BoolExpr) then Stmt+

[( elseif (BoolExpr) then Stmt+)*
else Stmt+]
endif;

| while(BoolExpr) do Stmt+
endwhile;

Fig. 6: Syntax of statements in control program.

program, the internal variables v are initialized, then
after every T time units (that is the periodicity of the
control task), the state of environment is sensed and stored
in variables xs. Then the program is executed, thereby
changing the values of v and uout. In this paper, we assume
that the timing behavior of this computation is provided
by the Typical Worst Case Analysis (TWCA) with Typical
Worst Case Response Time (TWCRT) of this computation
given as W . Hence, if the computation terminates within
W time units, the values uout are given as actuation values,
i.e. u, and the environment evolves according to ODE in
Equation 1 with u as the constant input until the next
actuation happens. This sequence of sensing, computation,
and actuation repeats. The computation model in this
paper makes the following realistic assumptions.
1) The control program is a periodic task with time

period T .
2) The Typical Worst Case Response Time (TWCRT)

is given as W .
3) The timing behavior, i.e., the deadline misses, of the

periodic task is given by the Typical Worst Case
Analysis (TWCA) of the control program.

The structure of control program considered in this paper
is given in Figure 5. The syntax of statements in program
(Stmt) is given in Figure 6.

RealExpr is the set of arithmetic expressions over the
inputs, program variables, and real constants. BoolExpr
is the set of boolean expressions, obtained by conjunction
and disjunctions of comparison (==, !=, >=, >, <= ,<
denoting the respective operations) over arithmetic expres-
sions. For performing TWCA, it is a common requirement
that all the loops in the program should have explicitly
known bounds. Hence the while statements are syntactic

sugar for finite number of if-then-else statements.
As control program interacts with the environment ev-

ery T time units, the execution of control program is given
as the sequence (x0

s,v0, u0
out), (x1

s,v1, u1
out), . . . where v0

is the initial valuation of the internal variables, x0
s is the

initial state of the environment and u0
out = 0. At the jth it-

eration of the control program, xjs denotes the sensed state
of the environment, vj represents the internal variables,
and ujout is obtained by 〈vj , ujout〉 = [[P ]](vj−1, xj−1

s ) if the
task deadline of TWCRT is met or ujout = uj−1

out if it is not
met. Here, [[P ]] represents the result of the computations
performed by the control program. We assume that the
internal variables v get updated even in case the task
misses the TWCRT deadline.

As described earlier in the paper, we reduce the verifica-
tion of such embedded control systems to the problem of
software verification. Verification conditions over programs
would involve predicates that are satisfied by the program
variables after the execution of a given statement. The
syntax of programs with verification conditions would have
additional syntax as
Stmt ::= ...

| Assume(BoolExpr);
| Assert(BoolExpr);

The statement Assert(BoolExpr) asserts that the cur-
rent program configuration satisfies the boolean condition
specified. The statement Assume(BoolExpr) nondeter-
ministically selects the value of the variables involved in
a way that boolean condition is satisfied. A program with
Assert and Assume statements is defined to be correct if
and only if for all nondeterministic choices made by the
program during the assume statements, all the assertions
provided by the assert statements hold.

Given an environment that satisfies Equation 1, a con-
trol program P , time period T , Typical Worst Case Analy-
sis TWCA, TWCRTW , we denote the closed loop system
as A = [P,A,B, T,W, TWCA]. An execution of the closed
loop system starting from initial environment state x0 and
initial valuation of program variables v0, is an execution
obtained by concatenating trajectories ξ0 · ξ1 · ξ2 . . . such
that
1) ξ0 is a trajectory of the system in Equation 1 with

input u0 = 0, ξ0.fstate = x0, and ξ0.dur = W . That is,
the first scheduling of the task will meet the deadline.

2) ∀i ∈ N+, ξi is a trajectory of the system in Equation 1
with input ui, ξi.dur = T , and ξi.lstate = ξi+1.fstate.

3) ∀i ∈ N+, ui, the input for trajectory ξi is obtained
as 〈vi, ui〉 = [[P ]](vi−1, ξi−1(ts)). Where ts is the
time between two successful actuations of the control
program, given by TWCA.

We denote such an execution of A as αA(x0,v0) and
its state after time t as αA(x0,v0, t). Figure 4 gives an
instance of a control task with TWCA. We note that this
model not only captures the scheduling aspect of control
tasks in real time systems, but also the delay between



sensing and actuation caused due to computation.
Definition 1: Given a system in Equation 1, a con-

troller code P with time period T , Typical worst case
analysis TWCA, TWCRT W , initial set of states Θ,
initial set for internal program variables V, unsafe set of
states U , and discrete steps Nb, the closed loop system
A = [P,A,B, TWCA,W ] is said to be safe if and only if
∀k ∈ N, 0 ≤ k ≤ Nb,∀x0 ∈ Θ,∀v0 ∈ V, the state of the
execution at time k×T+W , αA(x0,v0, k×T+W )∩U = ∅.
Given an execution of αA starting from Θ and V, where

αA = ξ0 · ξ1 . . . with the duration of ξi is T , to infer the
safety of αA it suffices to check ∀i ≤ Nb, ξi.fstate∩U = ∅.

Remark 1 Although we consider bounded number of
steps for safety verification, one can trivially extend the
definition to unbounded number of steps by checking that
∀k ≥ 0, αA(x0, v0, k×T +W )∩U = ∅. Also, note that our
definition of safety verification does not check for safety of
the intermediate states between time instances k×T +W
and (k+1)×T+W . In Remark 2, we present a sub-class of
linear systems for which our technique can verify safety of
the intermediate states as well. For more general systems,
using Lipschitz bounds and discrepancy functions [10], one
can infer safety of the intermediate states from the safety
at discrete time instances.

III. Technique

In this section, we present our reduction of closed loop
embedded control systems to software verification. For
a closed loop system A with linear ODEs representing
the dynamics of environment, we construct a program
transform(A) with assume and assert statements, such that
if transform(A) is safe, then the closed loop system is
safe. We now present the different steps in constructing
transform(A).
1) Analytical Solutions for Linear ODEs: For linear

ODEs of the format given in Equation 1, the closed form
expression for trajectory is given in Equation 2. Observe
that the closed form expression involves matrix exponen-
tials, which is an infinite sum and cannot be computed
exactly for any given arbitrary matrix. However, for peri-
odically actuated systems, we make two observations that
makes the verification tractable. First, for a given time T ,
eAT can be computed efficiently (numerical accuracies for
matrix exponential will be discussed in Section III-A1).
Second, the actuation happens only at the actuation in-
stances and hence the input u is constant for the T time
units. Thus, the integral term that accounts for the change
of state due to input u can also be efficiently computed.
Combining these two observations, we get that the state
of the system after T time units is given as ξ(x0, u, T ) =
eATx0 +G(A, T )Bu where G(A, T ) =

∞∑
i=0

AiT i+1

(i+1)! .

The numerical values of eAT and G(A, T ) give the dis-
crete step transition for the environment. A positive side
effect of this discrete solution is that eAT and G(A, T ) are

# deadline misses consecutive executions

1 3
2 5

TABLE I: Example of a typical worst case analysis model
of a task. The table provides the maximum number of
misses than can happen in the consecutive executions.

d_5 = d_4; d_4 = d_3; d_3 = d_2; d_2 = d_1;
deadline_met = 0; // assume deadline miss
Assume(d_1 == 0 || d_1 == 1);
if ((d_1 == 1) && ((d_1 + d_2 + d_3 + d_4 + d_5 > 2)

|| (d_1 + d_2 + d_3 > 1))) then
d_1 = 0; // according to TWCA

endif;
if (d_1 == 0) then deadline_met = 1; // deadline met
endif;

Fig. 7: Code that tracks all possible deadline misses ac-
cording to the TWCA given in Table I

both constant matrices for given values of A and T . Hence,
using these numerical values, we can compute the relation
between ξ(x0, u, T ), x0, and u. This relation between the
input u and corresponding state x0 helps us improve the
accuracy of analysis. Moreover, this relationship is linear ,
and hence can be efficiently analyzed.
2) Handling Timing Behaviors: In this paper, we con-

sider the timing behaviors to be given by Typical worst
case analysis TWCA. The complete description of TWCA
is beyond the scope of this paper, so we provide a brief
overview of the analysis. TWCA allows the real time tasks
to miss the deadlines, however, provides a bound on the
number of times such missed happen. Consider the TWCA
provided in Table I. The TWCA model guarantees that
there would be at most 1 deadline misses in 3 consecutive
executions and at most 2 deadline misses in 5 consecutive
executions of the given task.

To model such behavior in software we maintain the
history of deadline misses and nondeterministically choose
whether the current deadline will be missed or not. Ex-
ample code that tracks all possible deadline misses ac-
cording to the TWCA given in Table I is provided in
Figure 7. The code in Figure 7 is expected to be executed
at the begining of every period. The boolean variables
d_1,d_2,d_3,d_4,d_5 maintain the history of deadline
misses for last 5 periods of the task; d_i is 1 iff the
deadline was missed i periods before. The Assume state-
ment decides whether the deadline in the current period is
going to be missed by nondeterministically picking a value
for d_1. The if-then-else statements check the required
conditions and allow the deadline to be missed only if
the nondeterministic choice of d_1 is consistent with the
TWCA model. We call the above program transformation
of TWCA as Prgm(TWCA). At the end of Prgm(TWCA), the
deadline is met if and only if deadline_met == 1.



Assume(x_s in InitSet, u == 0, v in InitialVals)
iterator = 0;
x = expm(A,W)*x_s + G(A,W)*B*u; // First execution
// Bounded model checking
while(iterator < N_b)

P; // Compute actuation parameters
Prgm(TWCA); // Check for deadline misses
if (deadline_met) then

u_a = u; // Update actuation parameters
endif;
// Evolution of environment according to inputs
x_next = expm(A,T)*x + G(A,T)*B*u_a;
x_s = expm(A,T-W)*x + G(A,T-W)*B*u_a;
// Safety verification at discrete time instaces
Assert(x_next not in U);
x = x_next;
iterator = iterator + 1;

endwhile;

Fig. 8: transform(A) that performs safety verification of
closed loop systems using the matrix exponential and
Prgm(TWCA).

A. Transformed Program

We now present transform(A) by combining the tech-
niques in Sections III-1 and III-2. The transformation
essentially generates a program with bounded loop where
each iteration of the loop corresponds to the trajectory
ξi in the execution of the closed loop system. In the
body of the loop, we assign to x_next, the last state of
trajectory ξi using the numerical computation of matrix
exponential. For checking the safety of the system at these
time instances, assert statements with safety predicates on
x_next are added in the program. For handling the timing
behaviors and computing the new actuation values accord-
ing to the missed deadlines, in the transformed program,
the actuation parameters u_a are updated only when the
results of computation would be actuated according to the
TWCA. The formal definition of this program is given in
Definition 2
Definition 2: Given a closed loop system A =

[P,A,B, T,W, TWCA], discrete steps Nb, initial states
InitSet, initial valuations of program variables InitVals,
and unsafe set U, the transform(A) program for the safety
verification is defined in Figure 8.

Intuitively, the program transform(A) simulates the con-
tinuous evolution of the environment and the computa-
tions in the control program for T time units. Assume
that at the beginning of the loop, x represents the state
of the environment and u represents the input to the
environment. Updating the variables x_next according to
the numerical values of matrix exponential gives us the
state of the environment after T time units. Prgm(TWCA)
tracks the computations of the control program and checks
whether a deadline is met or missed. It updates u only
when the deadline is met. Observe that by computing
matrix exponentials, the relationship between x, x_s, and

[s_s,v_s,a_s,vf_s] = sense_environment();
if (s_s >= threshold_1 && vf_s < v_s - 1) then

u = -2*a_s -2*(v_s - vf_s);
elseif (s_s >= threshold_2 && vf_s < v_s -5)

u = -3*a_s -3*(v_s - vf_s) + (s_s -(v_s + 5));
else

u = 0;
endif;
actuate_system(u);

Fig. 9: A control program for adaptive cruise control with
branching structure.

u, is maintained, which results in a more accurate analysis.
We illustrate the transformation using an example.

Example 1 Consider a control program for the adaptive
cruise control as given in Figure 9 where threshold_1 and
threshold_2 are parameters chosen by the programmer
for performance tuning.

Consider the initial set defined as (s == 100 && vf ==
60 && v >= 55 && v <= 65 && a == 0) and the unsafe
set defined as (s <=60 || v >= vf + 10 || v <= vf -
10), and TWCA in Table I. For T = 0.1, eAT and G(A, T )
computed using MATLAB are

1.0 −0.0995 −0.005
0 0.99 0.0995
0 0 1.0

 and


0.1 −0.005 −0.0002
0 0.0995 0.005
0 0 0.1


respectively. Also, B is a column vector given as [0, 0, 1]T .
For the sake of presentation, we omitted the first tra-
jectory of the execution and also updating of x_s. The
transformed program for 2 discrete-time steps is given in
Figure 10.

Theorem 1 (Soundness): A given closed loop system A
is safe with initial set Θ, program variables in V, unsafe set
U , and steps Nb if and only if the program transform(A)
is correct.

Proof: The proof relies on demonstrating that the
program correctly simulates both the evolution of the
environment and the deadline misses according to the
TWCA model. The formal proof is by induction. Consider
an execution of the system αA = ξ0 · ξ1 · . . . starting from
Θ and V. We prove that for every such execution, there
exists a run of the program, such that every ith iteration
of the loop in transform(A), the state variable x at the
beginning of the loop, is the state of ξi.fstate, the input
variable u is the input value ui for the trajectory ξi, and the
program variables vi are the values for vi the trajectory ξi.
Thus, the safety of the execution is equivalent to checking
ξi.lstate∩U = ∅, which is done by the assert statement in
the loop. From the correct transformation of the TWCA
in Section III-2 and the numerical solution of trajectory
in Section III-1, this proof easily follows.



Assume( s_s == 100 && vf_s == 60 && v_s >= 55 && v_s
<= 65 && a_s == 0 && u == 0 )

iterator = 0;
// Omitted the first execution
while(iterator < 2)

// Compute actuation parameters
if (s_s >= threshold_1 && vf_s < v_s - 1) then

u = -2*a_s -2*(v_s - vf_s);
elseif (s_s >= threshold_2 && vf_s < v_s -5)

u = -3*a_s -3*(v_s - vf_s) + (s_s -(v_s + 5));
else

u = 0;
endif;

// Check deadline misses according to TWCA
d_5 = d_4; d_4 = d_ 3; d_3 = d_2; d_2 = d_1;
deadline_met = 0;
Assume(d_1 == 0 || d_1 == 1);
if ((d_1 == 1) && ((d_1 + d_2 + d_3 + d_4 + d_5 >

2) || (d_1 + d_2 + d_3 > 1))) then
d_1 = 0;

endif;
if (d_1 == 0) then deadline_met = 1;
// Update actuation parameters if deadline is met
if (deadline_met == 1)

u_a = u;
endif;
// Update x_n values using matrix exponential
s_n = s - 0.0995*(v-vf) -0.005*a - 0.0002*u_a;
v_n = vf + 0.99*(v-vf) + 0.0995*a + 0.005*u_a;
a_n = a + 0.1*u_a;
// Omitted updating x_s
// Safety Verification
Assert(not(s_n <= 60 || v_n >= vf + 10 || v_n <=

vf -10 ));
s = s_n; v = v_n; a = a_n;
iterator = iteration + 1;

endwhile;

Fig. 10: Closed loop system for adaptive cruise control
given in Figure 9.

1) Handling Numerical Approximations: As matrix ex-
ponentiation involves an infinite sum, exact value of the
exponent eAh and G(A, h) cannot be computed. The value
of matrices obtain from MATLAB are numerical approx-
imations of these quantities. However, various algorithms
for sound numerical approximations of matrix exponen-
tials are available in literature (refer to [25]). Using these
techniques, one can compute estimate and error matrices
Ê, and Ẽ for eAh, and estimate and error matrices Ĝ, and
G̃ for G(A, h) such that eAh ∈ Ê±Ẽ, and G(A, h) ∈ Ĝ±G̃.

Using the estimate and error matrices to compute
xnext = eATx + G(A, T )u gives us the expression xnext ∈
Êx±Ẽx+Ĝu±G̃u. To compute sound overapproximation
of this operation, add two nondeterministic error variables
x̃ and ũ such that x̃ ∈ [−Ẽx, Ẽx] and ũ ∈ [−G̃u, G̃u]. To
compute the range of these nondeterministic expressions,
we first guess an invariant for the system, say I, and assign
range of x̃ such that ∀x ∈ I, [−Ẽx, Ẽx] ⊆ range(x̃) and
similarly assign range for ũ. Thus, for the invariant I,
we compute errx = {max||Ẽx|| for x ∈ I} and assign

x̃ ∈ [−errx, errx]. Similar overapproximation is performed
for ũ. Hence the expression xnext = Êx+ x̃+Ĝu+ ũ would
be sound overapproximation for xnext = eAhx+G(A, h)u.

Note that the invariant I chosen need not be precise
enough to infer safety from the unsafe set U . For example,
in the case of adaptive cruise control example, selecting the
invariant I ∆= s ∈ [−1000, 1000] ∧ v ∈ [0, 200] ∧ a ∈ [0, 10]
would bound the error matrices errx <= 0.01. Thus for
vf = 60, the invariant I does not prove safety from the
unsafe set U . For a given I, we compute x̃ and ũ using a
given approximation method for matrix exponential. For
using the obtained values of x̃ and ũ for all iterations, one
has to add the assertion xnext ∈ I at the end of every
iteration to ensure that the error estimate is correct.

In practice, one can use multi-precision arithmetic to
get arbitrarily precise x̃ for a given invariant I. However,
the wrapping effect of these approximations might cause
exponential increase in errors. We note that for stable
numerical systems, these errors do not accumulate as
the eigenvalues of eAt < 1. As the computed values are
sound numerical approximations, the soundness property
from Theorem 1 is still preserved, but the completeness
property does not hold. That is, if transform(A) is correct,
then A is safe, but if transform(A) is unsafe, we can no
longer conclude that A is unsafe. However, if the property
violation of transform(A) provides a counterexample, one
can use guaranteed numerical integration engines like
CAPD2 to validate the counterexamples.

Remark 2 For special forms of linear ODEs (for example,
when the matrix A is nilpotent), the solution of the ODE
admits a polynomial closed form solution (say ξ(x0, u, t) =
F (x0, u, t)). For such systems, one can not only verify
the safety at discrete time instances, but also for the
entire duration of trajectory, i.e., ∀t < Nbh, ∀x0 ∈ Θ,
v0 ∈ V, αA(x0,v0, t) ∩ U = ∅. Checking this would
require the following modifications in transform(A). First,
an additional variable t is added to transform(A) (which
represents the time) and its value is nondeterministically
chosen from the range [0, T ]. Second, state variables xreach
representing the state of system at time t are added along
with the statements that assert xreach = F (x, u, t). Fi-
nally, for checking the safety of these intermediate states,
the assertion xreach ∩ U = ∅ is added to the program.
The transformed program now not only verifies the safety
at discrete time instances, but also at intermediate time
values as well. Moreover, for such cases, the matrix expo-
nential is computed exactly and the analysis is not only
sound, but also relatively complete.

Having seen the transformation from closed loop embed-
ded control system to software verification, in the next sec-
tion, we will look at two main techniques commonly used
in software verification and apply them for verification of
transformed program.

2http://capd.ii.uj.edu.pl/index.php



IV. Verifying Transformed Programs

Abstract Interpretation: Abstract Interpretation,
originally proposed in [7] is one of the most popular
techniques for verifying programs. In this technique, an
abstract domain is chosen to overapproximate the set of
states and the statements in program are considered to
be transformers on these abstract domains. The efficiency
and precision of analysis depends on the domain used for
analysis. To perform the analysis of loops, the behavior of
the program is approximated by computing the fixpoints
of these transformations over the domains, typically using
a widening operator [8]. One of the drawbacks of this
analysis is that a counterexample cannot be generated
when the program violates the correctness property. In this
paper, we used Interproc abstract interpretation tool, built
on top of Aapron Library [21] for verifying the correctness
of transformed programs.

Bounded Model Checking Using SMT Solvers:
Recent progress in the efficiency of SMT solvers [9], [11]
has made them an attractive tool for checking bounded
time properties of software and hardware systems. An
SMT solver takes as input a formula (boolean combina-
tions of assertions on variables in a theory) and proves
whether the formula is satisfiable or unsatisfiable. Op-
erations over variables in a program are encoded as pre
and post conditions in Floyd-Hoare logic. For dealing with
loops, a loop invariant has to be explicitly provided. Since
finding these loop invariants is an undecidable problem,
bounded loop unrolling with variable renaming is per-
formed and each of the statements is then encoded in
Floyd-Hoare logic. If all the assertions in the program are
satisfied, then the program is correct. For a formula that
is not satisfiable, SMT solvers return a model that violates
the formula which corresponds to a given execution in
the program. This ability to generate counterexamples
is an advantage of SMT solvers over abstract interpreta-
tion techniques. However, without a loop invariant, SMT
solvers can only handle bounded loops, which is a draw-
back compared to the abstract interpretation technique.
For checking loops with unknown bounds, loop invariants
have to be automatically synthesized before encoding them
into SMT formula. In this paper, we used Z3 [9] as the back
end SMT solver for bounded model checking (BMC).

V. Experiments

To test the validity of our approach, we consider a
set of benchmark examples of linear control systems and
apply abstract interpretation techniques and bounded
model checking using SMT for checking correctness of
transformed programs. In order to compare with the reach-
able set computation approaches, we also compare the
running time with SpaceEx [16]. Given a control program,
and the linear dynamics of environment, our prototype
tool generates the transformed program as described in
Section III-A. For all the experiments in this paper, we

only take into account the WCET to present the relative
merits and demerits of each of the approaches.

Our experimental evaluation has two parts. In the first
part of the evaluation, we compare the results of bounded
model checking using Z3 with abstraction interpretation
techniques using Interproc and state of the art hybrid
systems verification tool SpaceEx. After observing that
BMC using Z3 gives the most accurate verification results
very quickly, we evaluate a suite of benchmarks using
this approach and present the experimental results. All
experiments were performed on an Intel i7-Quad core
machine with 8GB memory3.

A. BMC vs Abstract Interpretation vs SpaceEx

To evaluate the relative merits of analyzing the trans-
formed program using Interproc, Z3, and hybrid systems
verification tool SpaceEx, we consider Example 1 and its
simplification (referred as kinematic system). For analyz-
ing the precision of analysis, we consider two variants
of adaptive cruise control system as ACC1 and ACC2
and two variants of kinematic system as Kinematic1 and
Kinematic2 respectively. The unsafe set considered in
ACC1 is closer to the reachable set than ACC2 and the
unsafe set inKinematic1 is closer to the reachable set than
Kinematic2. Bounded loop unrolling of the transformed
program are given as input to SMT solver for verification.
For analysis using Interproc, we used the box, octagon
and polyhedral domain for analysis. The reachable set
computation in SpaceEx used support functions with box,
oct and uni32 options. The results are given in Table II.
As expected, the performance and the accuracy of the

abstract domain are inversely related. Polyhedral domain,
which could prove safety in all 4 cases took couple of orders
of magnitude more time than other domains. We observed
that in octagon domain, the octagon representing the
reachable set had all the variables in the program, which
leads to the poor quality of overapproximation. Similarly
the performance of SpaceEx depended on the domain
chosen for support functions. An interesting observation
is that oct could prove safety of Kinematic2 example
which uni32 failed. We hypothesize that this is because
of linear relations between the inputs and state variables
being preserved in the oct constraints during the discrete
transitions. Observing the trade off between accuracy and
efficiency, we prefer encoding the program correctness as
SMT instance over using abstract interpretation. Although
box domain could prove the safety of the system in
ACC2 and Kinematic2, we prefer encoding the program
correctness as SMT formula because it has the advantage
of providing a model which violates the property and in
this case, it “approximately’’ corresponds to the execution
of the closed loop system.

3Script files for experiments can be downloaded from http://engr.
uconn.edu/~psd/closed-loop-verification/

http://engr.uconn.edu/~psd/closed-loop-verification/
http://engr.uconn.edu/~psd/closed-loop-verification/


Benchmark Steps Z3 Interproc SpaceEx
box oct poly box oct uni32

ACC1 25 P, 25.8 s F, 0.2 s F, 12.2 s P, 18m 50s F, 0.3 s F, 10.3 s F, 32.8 s
ACC2 25 P, 25.9 s P, 0.2 s F, 12.1 s P, 18m 22s F, 0.3 s F, 10.3 s F, 32.6 s

Kinematic1 25 P, 5.8 s F, 0.05 s F, 1.8 s P, 4m 18s F, 0.2 s F, 2.5 s F, 25.9 s
Kinematic2 25 P, 5.8 s P, 0.05 s F, 1.8 s P, 4m 20s F, 0.2 s P, 2.4 s F, 25.8 s

TABLE II: Table showing the running times of safety verification problem using Z3, Interproc (box, octagon, and
polyhedral domain), and SpaceEx (box, oct, and uni32 support functions). The table shows whether the tool could
prove (P) or failed to prove (F) the property and the time taken.

B. Experimental Results With BMC Using Z3
As observed in Table II, considering the trade off be-

tween precision and scalability, we evaluate a suite of
benchmarks using only Z3. The results of verifying the
following benchmarks using Z3 are given in Table III.

Motor Transmission Shift Controller in Electric
Vehicles: This benchmark, proposed in [4], deals with
gear transmission in electric vehicles. This system models
the phenomenon where the shaft disengages from one gear
and meshes with another. The dynamics of the system
during the meshing process is given by the following
dynamics.

ṗx = vx

v̇x = Fs
ms

ṗy = vy

v̇y = Rs · (Tm − Tf )
J

Where px, py, vx, vy denote the x and y position and
velocity of the shaft respectively, ms is the mass of the
shaft, Fs is the force applied during the transmission, i.e.,
given as an input, Rs is the radius of the shaft, Tm is the
motor torque given as an input during the transmission,
Tf is the resistive torque, and J denoting the rotational
inertia of the gear.

A controller designed for the above system that actuates
Fs and Tm is required to smoothen the meshing process
during the transmission. In [4], the authors synthesize a
piecewise affine, open loop controller of the system. We
use a fragment of the open loop controller and verify the
property that in bounded time (say within 25 discrete
steps), the meshing process is successful.

Locomotive Spring Damper: This system obtained
from [24] models the spring damping phenomenon when a
locomotive pulls the train car. The dynamics of the system
are given as:

ḋs = vl − vc

v̇l = − k

ml
ds −

b+ c

ml
vl + b

ml
vc + F

ml

v̇c = k

mc
ds + b

mc
vl −

b

mc
vc

Where ds is the elongation of spring of restitution k
connecting locomotive and car, vl,ml and vc,mc represent
the velocity and mass of locomotive and car respectively,
b represents the damping coefficient, and c represents the
aerodynamic friction. In [24], the authors give a controller
for F with the control objective that the elongation of the
spring converges to 0. We designed a switched controller
for the system assuming under the assumption that the
system is fully observable. The property verified is a safety
property, i.e., the elongation of the spring is less than a
given safety threshold for bounded time (30 discrete steps).

Smart Thermostat: We consider a variant of the
regular thermostat hybrid system with on and off modes.
The thermostat model considered is similar to [13] as
it can sense the temperatures in the surrounding rooms
and also the temperature of weather. The thermostat has
5 modes of operation namely full-cold, medium-cold, off,
medium-heat, and full-heat. The decisions to switch among
these modes is made based on the sensor readings from
the surrounding rooms and environment. We consider the
behavior where the weather temperature rises steadily
and then steadily falls. The property verified is that
the temperature of all the rooms stays in the optimum
temperature range for which the thermostat is designed.

Nonlinear Kinematic Controller: We consider a
variant of the kinematic system. In this example, we
consider the controller to be a gear system which gives
the acceleration as output to the environment. The ac-
celeration provided is computed as a nonlinear function
of the velocity v. The goal of this controller is to attain
the desired speed of the system (say vd) within a given
time bound. The hybrid automata model of the closed
loop system with immediate feedback would give nonlinear
ODEs. As Z3 can handle nonlinear real arithmetic, we
could perform bounded time safety verification of this
system.

C. Discussion
Unbounded Time Verification: Although in this paper

we presented bounded time verification of closed loop
systems, one can using abstract interpretation and loop
invariants for verifying the transformed program for un-
bounded time. Given a program with a loop (bounded or
unbounded), Interproc automatically applies the widening



Benchmark Steps Verif. Res. T
MT SC 15 Meshed 12.6 s
MT SC 20 Meshed 1m 14 s
MT SC 25 Meshed 5m 55 s

Locomotive 30 Safe 42.4 s
T hermostat 35 Optimum 6.9 s
T hermostat 40 Optimum 15.1 s
T hermostat 45 Optimum 33.4 s

Non.Lin.Kin. 20 Safe 2m 25s

TABLE III: Table depicting the running time of safety verification
problem for different benchmark examples when encoded as bounded
model checking problem in Z3. MTSC - Motor Transmission Shift Con-
troller in Electric Vehicles, Non.Lin.Kin - Nonlinear Kinematic Con-
troller, T - time taken for verification given in minutes.seconds format,
Verif.Res. - Verification Result.

operator in that domain to compute the overapproxima-
tion of the reachable set of states. For adaptive cruise
control and kinematic system, box and octagon domain
produced fixed points in a matter of seconds. However,
these fixed points could not prove the safety property
of interest. Polyhedral domain did not produce a fixed
point even after 30 minutes. SpaceEx can, in some cases,
verify linear hybrid automata for unbounded time if it
successfully computes a fixed point for the reachable set.
In all of our examples, SpaceEx did not compute fixed
point even after 30 minutes.
Bounded Model Checking Using SMT: Two observations

can be made from the results presented in Table III. First,
as seen in the case of MTSC and Thermostat bench-
marks, the running time of the verification problem does
not scale linearly with the number of steps. As the number
of steps increases, the number of variables in the SMT
formula also increases linearly. This linear increase leads
to exponential increase in the state space and the clauses
to be considered. Hence, there is a nonlinear growth in
running time. Although it is unclear whether this tech-
nique can scale to long time horizons, this technique shows
promise in providing short “short’’ counterexample traces
that are obtained from SMT instances. Second observation
is the efficiency of linear arithmetic as compared to nonlin-
ear real arithmetic. In the nonlinear kinematic controller
example, we consider a nonlinear variant of the controller
and thus the SMT formula has nonlinear constraints.
This leads to increase in verification time by an order of
magnitude when compared to the linear variant.

VI. Related Work
Hybrid Systems is the formalism used to model systems

that interact with physical environment that are guided
by programs. In this formalism, the software state is
abstracted as a state transition graph and the continuous
interaction with the environment is represented as ODEs.
Reachable set computation for discrete models, linear

and nonlinear systems [16], [15], [5], bisimulation tech-
niques [29], and abstraction techniques [31] are commonly
used techniques for attacking the verification problem.
Discretization of linear systems for computing relational
abstractions was considered in [33], however, it does not
consider periodic inputs from control software.

Abstract interpretation [7] has been successfully ap-
plied in static analysis for embedded software to analyze
arithmetic overflows, division by zero errors, and buffer
overflows. Error analysis of embedded software with com-
putations over float and double have been analyzed in
Fluctuat [18]. Similar analysis that uses ellipsoidal domain
for stability of digital filters is performed in [14]. In the
current paper, the transformed program not only considers
the behavior of the software, but also of the environment
and hence prove properties of the closed loop system.

In [23], the authors consider a similar system, i.e. an
environment and controller program that governs it. They
perform symbolic error analysis, which deals with the
numerical errors due to the controller implementations.
These errors and then used together with the stability
proofs of the environment using Lyapunov functions to
obtain a region of stability for the control system imple-
mentation. Bounded time executions of the same system
are considered in [22], however the authors focus on sym-
bolically perform the robustness analysis for getting an
overapproximation of the reachable states. This paper also
considers a similar setting, however instead of separating
the error analysis of software and the stability proofs for
environment, we instead generate a transformed program
that captures the behavior of the closed loop system.

HybridFluctuat [1], Sahvy [28], and Frehse et. al. [17]
consider safety verification of systems where environment
is periodically actuated at discrete intervals by a pro-
gram. While HybridFluctuat uses abstract interpretation
to compute the reachable set of software state and uses
guaranteed simulation engine GRKLib [2] for continuous
trajectories of the environment, Sahvy uses SMT Solver
Z3 to generate assertions over the software state and
uses Flow* [5] for obtaining the reachable set of the
environment. The authors in [17] use SpaceEx for the anal-
ysis. The difference between these techniques, and those
outlined here, are that we discretize the continuous flow of
the environment and construct an equivalent program to
be analyzed. One of the advantages of our technique is that
one could deduce inductive invariants or fixed point using
the abstract interpretation engine to verify the safety of
the system for unbounded time, which cannot be achieved
in these other approaches.

In [27], the authors consider the setting of environment
being actuated periodically. They construct Approximate
Quotient Transition System from the model to compute
reachable set of states and generate counterexamples for
violation of safety property. In [12], the authors perform
systematic simulations of the closed loop system and
search the state space for counterexamples that violate the



safety property. Although the technique generates sample
simulations, the technique is unsound and can only be used
for bug-detection.

VII. Conclusions And Future Work
In this paper, we presented a technique for verifying

closed loop systems where the environment is governed by
linear ODEs and a control program periodically senses the
state of environment and sets the actuation parameters.
Such a model represents the deployed embedded system
more accurately and takes into account the worst case
execution time and task scheduling in real time operating
systems. We reduce the bounded time safety verification
of closed loop system to software verification by pre-
senting a transformation procedure. We use two main
techniques namely abstract interpretation and bounded
model checking using SMT for verifying correctness of
programs after transformation, compare the performance
with reachability computation tools and present relative
merits and demerits of these approaches.

We believe that the transformation presented in this
paper is an important contribution because now one is
not just restricted to hybrid systems verification tools, but
can also apply software verification techniques for analyz-
ing closed loop systems. This also leads to new avenues
for future work such as applying symbolic execution [3],
software testing techniques [26], learning loop invariants,
etc. for verifying the transformed program. Investigating
liveness properties of closed loop systems using program
termination techniques [6] and its relation with “closed
loop stability’’ can also be investigated.
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