3/14/16

“\\\Y Stony Brook University CSE 506: Operating Systems ‘* Stony Brook University CSE 506: Operating Systems
Logical Diagram
x86 Memory Protection and Binary Memory Threads
. Formats Allocators U
Translation User
System Calls Kernel
Don Porter [RCU M File System M Networking M Sync]
CPU
Scheduler
- wm ___,___Har;jware
Consistency
1 Today’s Lecture: Focus on Hardware ABI >
“\\\Y Stony Brook University CSE 506: Operating Systems ‘* Stony Brook University CSE 506: Operating Systems
Lecture Goal Undergrad Review
* Understand the hardware tools available on a * Whatis:
modern x86 processor for manipulating and — Virtual memory?
protecting memory — Segmentation?
* Lab 2: You will program this hardware — Paging?
* Apologies: Material can be a bit dry, but important
— Plus, slides will be good reference
¢ But, cool tech tricks:
— How does thread-local storage (TLS) work?
— An actual (and tough) Microsoft interview question
“\\\Y Stony Brook University CSE 506: Operating Systems ‘* Stony Brook University CSE 506: Operating Systems
Memory Mapping Two System Goals
1) Provide an abstraction of contiguous, isolated virtual
Process 1 Process 2 memory to a program
Virtua Virtual Memary 2) Prevent illegal operations
ox100 Only one physical \§{10®r09ralﬂ expects (*x) — Prevent access to other application or OS memory
address 0x1000!! COTEIIYETY DY at — Detect failures early (e.g., segfault on address 0)
b / Jadgregs §x1400 — More recently, prevent exploits that try to execute
s S0g: program data

0x1000
Physical Memory

'\\\“ Stony Brook University CSE 506: Operating Systems

Outline
* x86 processor modes
* x86 segmentation
* x86 page tables
* Advanced Features

Interesting applications/problems

3/14/16

‘* Stony Brook University CSE 506: Operating Systems

x86 Processor Modes
¢ Real mode — walks and talks like a really old x86 chip
— State at boot

— 20-bit address space, direct physical memory access
* 1 MB of usable memory

— Segmentation available (no paging)

Protected mode — Standard 32-bit x86 mode
— Segmentation and paging

— Privilege levels (separate user and kernel)

'\\\“ Stony Brook University CSE 506: Operating Systems

x86 Processor Modes

* Long mode — 64-bit mode (aka amd64, x86_64, etc.)

— Very similar to 32-bit mode (protected mode), but bigger
— Restrict segmentation use

— Garbage collect deprecated instructions

* Chips can still run in protected mode with old instructions

* Even more obscure modes we won't discuss today

'\\\“ Stony Brook University CSE 506: Operating Systems

x86 Segmentation
¢ Asegment has:
— Base address (linear address)
— Length
— Type (code, data, etc).

‘* Stony Brook University CSE 506: Operating Systems

Translation Overview

Segmentation » ox6eadbeet

Physical Address

I
Protected/Long mode only

Virtual Address Linear Address

* Segmentation cannot be disabled!
— But can be a no-op (aka flat mode)

‘* Stony Brook University CSE 506: Operating Systems

Programming model
Segments for: code, data, stack, “extra”
— A program can have up to 6 total segments
— Segments identified by registers: cs, ds, ss, es, fs, gs
Prefix all memory accesses with desired segment:
— mov eax, ds:0x80 (load offset 0x80 from data into eax)
— jmp cs:0xab8 (jump execution to code offset 0xab8)
— mov ss:0x40, ecx (move ecx to stack offset 0x40)

QY stony Brook University

CSE 506: Operating Systems

3/14/16

QY stony Brook University

Segmented Programming Pseudo-example

// global int x =1
int y; // stack

ds:x = 1; // data
ss:y; // stack

if (x) { if (ds:x) {

y = 1; ss:y = 1;

intf (“Boo”); :

printf (“Boo”) cs ?5%?2500");

} else
} else
y = 0;
ss:y = 0;

CSE 506: Operating Systems

Segments would be used in assembly, not C

13

Programmlng, cont.
¢ This is cumbersome, so infer code, data and stack
segments by instruction type:
— Control-flow instructions use code segment (jump, call)
— Stack management (push/pop) uses stack
— Most loads/stores use data segment

Extra segments (es, fs, gs) must be used explicitly

QY stony Brook University

CSE 506: Operating Systems

Segment management

For safety (without paging), only the OS should
define segments. Why?

Two segment tables the OS creates in memory:
— Global —any process can use these segments

— Local — segment definitions for a specific process
How does the hardware know where they are?
— Dedicated registers: gdtr and Idtr

— Privileged instructions: Igdt, Ildt

QY stony Brook University

CSE 506: Operating Systems

Segment registers

Global or Local

Table Index (13 bits) Table? (1 bit)

Ring (2 bits)

¢ Set by the OS on fork, context switch, etc.

QY stony Brook University

CSE 506: Operating Systems

QY stony Brook University

Segments lllustrated

Low 3 bits 0
e
Index 1 (4" bit) cs: 0x8 ds: Oxf

N 0, | ox123000, [0xa23000,
e 08 1VB 1MB

call cs:0xf150 === 0x123000 + 0x£150
= 0x123150

CSE 506: Operating Systems

* Suppose my kernel is compiled to be in upper 256

* Bootloader starts in real mode (only 1MB of
addressable physical memory)

* Bootloader loads kernel at 0x00100000

Sample Problem:
(Old) JOS Bootloader

MB of a 32-bit address space (i.e., 0xf0100000)

— Common to put OS kernel at top of address space

— Can’t address 0xf0100000

'\\\“ Stony Brook University CSE 506: Operating Systems

3/14/16

Booting problem
* Kernel needs to set up and manage its own page
tables
— Paging can translate 0xf0100000 to 0x00100000

* But what to do between the bootloader and kernel
code that sets up paging?

‘* Stony Brook University CSE 506: Operating Systems

Segmentation to the Rescue!
* kern/entry.S:

— What is this code doing?
mygdt:
SEG_NULL # null seg
SEG(STA_X|STA_R, -KERNBASE, Oxffffffff) # code seg

SEG(STA_W, -KERNBASE, Oxffffffff) # data seg

'\\\“ Stony Brook University CSE 506: Operating Systems

JOS ex 1, cont.

SEG (STA_X|STA_R, -KERNBASE, Oxffffffff) # code seg

E;
xe;‘;:ja"d Offset Segment Length
ad -0xf0000000 (4GB)
permission

jmp 0x£f01000db8 # virtual addr. (implicit cs seg)

jmp (0x£01000db8 + -0x£0000000)

4

jmp 0x001000db8 # linear addr.

‘* Stony Brook University CSE 506: Operating Systems

Flat segmentation

¢ The above trick is used for booting. We eventually
want to use paging.

* How can we make segmentation a no-op?

* From kern/pmap.c:

// 0x8 - kernel code segment

[GD KT >> 3] = SEG(STA X | STA R, 0x0, OxfEffffff, 0),
Exe;t;t:dand Offset Segment Length Ring 0
2% 0x00000000 (4GB) 8
permission

'\\\“ Stony Brook University CSE 506: Operating Systems

Outline
* x86 processor modes
* x86 segmentation
* x86 page tables
* Advanced Features
* Interesting applications/problems

‘* Stony Brook University CSE 506: Operating Systems

Paging Model
¢ 32 (or 64) bit address space.
* Arbitrary mapping of linear to physical pages
¢ Pages are most commonly 4 KB

— Newer processors also support page sizes of 2 MB and 1
GB

'\\\“ Stony Brook University CSE 506: Operating Systems

How it works

* OS creates a page table
— Any old page with entries formatted properly
— Hardware interprets entries

* cr3register points to the current page table
— Only ring0 can change cr3

‘* Stony Brook University CSE 506: Operating Systems

Translation Overview

Pigure 5-9. Page Translation

PAGE_FRAME
[oim [eace || orrser ||
PHYSICAL
ADDRESS
PAGE DIRECTORY PAGE TABLE

PG TBL ENTRY —t

=

DIR ENTRY

'\\\“ Stony Brook University CSE 506: Operating Systems

From Intel 80386 Reference Programmer’s Manual

‘* Stony Brook University CSE 506: Operating Systems

Page Table Entries

cr3 Physical Address

0xf10 >>2)
cr3

Example
0xf1084150
b‘ 0x3b4 ‘ ‘ 0x84 ‘ ‘ 0x150 ‘
P Dir Offset
“?og; 1C‘l'add:iit5' Page Table Offset Physical Page Offset

(Next 10 addr bits)

(Low 12 addr bits)

Entry at cr3+0x3b4 *

sizeof(PTE) Enstil;yeg;((;iit)l *

Data we want at
offset 0x150

Upper (20 bits) Flags (12 bits)
0x00384 PTE_W|PTE_P|PTE_U
0 0
0x28370 PTE_W|PTE_P
0 0
0 0
0 0
0 0
0 0

'\\\“ Stony Brook University CSE 506: Operating Systems

Page Table Entries
* Top 20 bits are the physical address of the mapped
page
— Why 20 bits?
— 4k page size == 12 bits of offset
* Lower 12 bits for flags

‘* Stony Brook University CSE 506: Operating Systems

Page flags
3 for OS to use however it likes
4 reserved by Intel, just in case
* 3 for OS to CPU metadata
— User/vs kernel page,

— Write permission,
— Present bit (so we can swap out pages)
* 2 for CPU to OS metadata

— Dirty (page was written), Accessed (page was read)

'\\\“ Stony Brook University CSE 506: Operating Systems

Page Table Entries

User, writable,
present

cr3 Physical Address
Uppe! Flags (12 bits)
L No mapping \ PTE_W|PTE_P|PTE_U
0 0
0x28370 PTE_W|PTE_P| PTE_DIRTY
=

Writeable, kernel-only, present,
and dirty
(Dirty set by CPU on write)

'\\\“ Stony Brook University CSE 506: Operating Systems

3/14/16

QN stony Brook Universiy

CSE 506: Operating Systems

Back of the envelope

 If a page is 4K and an entry is 4 bytes, how many

entries per page?
— 1k

* How large of an address space can 1 page represent?

— 1k entries * 1page/entry * 4K/page = 4MB
* How large can we get with a second level of
translation?

— 1k tables/dir * 1k entries/table * 4k/page = 4 GB

— Nice that it works out that way!

QN stony Brook Universiy

CSE 506: Operating Systems

Challenge questions

* What is the space overhead of paging?
— l.e., how much memory goes to page tables for a 4 GB
address space?
* What is the optimal number of levels for a 64 bit
page table?
* When would you use a 2 MB or 1 GB page size?

TLB Entries

¢ The CPU caches address translations in the TLB

— Translation Lookaside Buffer

cr3 Virt Phys
0x£0231000 0x1000
0x00b31000 0x1£000
0xb0002000 0xc1000

Page Traversal is Slow

Table Lookup is Fast

'\\\“ Stony Brook University CSE 506: Operating Systems

‘* Stony Brook University CSE 506: Operating Systems

TLB Entries

* The CPU caches address translations in the TLB
* Translation Lookaside BufferThe TLB is not coherent
with memory, meaning:
— If you change a PTE, you need to manually invalidate
cached values
— See the tlb_invalidate() function in JOS

TLB Entries

¢ The TLB is not coherent with memory, meaning:
— If you change a PTE, you need to manually invalidate

cached values
— See the tlb_invalidate() function in JOS

cr3 - Virt Phys

C— 0x£0231000 0x1000
0x00b31000 0x1£000
0xb0002000 0xc1000

Same No

Virt Addr.

Change!ll / 3

'\\\“ Stony Brook University CSE 506: Operating Systems

3/14/16

Outline
* x86 processor modes
* x86 segmentation
* x86 page tables
* Advanced Features

* Interesting applications/problems

‘* Stony Brook University CSE 506: Operating Systems

Physical Address Extension (PAE)
¢ Period with 32-bit machines + >4GB RAM (2000’s)

* Essentially, an early deployment of a 64-bit page
table format

* Any given process can only address 4GB
— Including OS!

* Page tables themselves can address >4GB of physical
pages

'\\\“ Stony Brook University CSE 506: Operating Systems

No execute (NX) bit

* Many security holes arise from bad input
— Tricks program to jump to unintended address
— That happens to be on heap or stack
— And contains bits that form malware

* ldea: execute protection can catch these
— Feels a bit like code segment, no?

* Bit 63 in 64-bit page tables (or 32 bit + PAE)

'\\\“ Stony Brook University CSE 506: Operating Systems

And now the fun stuff...

‘* Stony Brook University CSE 506: Operating Systems

Nested page tables

* Paging tough for early Virtual Machine
implementations

— Can’t trust a guest OS to correctly modify pages
So, add another layer of paging between host-
physical and guest-physical

‘* Stony Brook University CSE 506: Operating Systems

Thread-Local Storage (TLS)
// Global
__thread int tid;

printf (“my thread id is %d\n”, tid);

Identical code gets
different value in each
thread

'\\\“ Stony Brook University CSE 506: Operating Systems

3/14/16

Thread-local storage (TLS)

* Convenient abstraction for per-thread variables

¢ Code just refers to a variable name, accesses private
instance

* Example: Windows stores the thread ID (and other
info) in a thread environment block (TEB)
— Same code in any thread to access
— No notion of a thread offset or id

* How to do this?

‘* Stony Brook University CSE 506: Operating Systems

TLS implementation

* Map a few pages per thread into a segment
¢ Use an “extra” segmentation register
— Usually gs
— Windows TEB in fs
¢ Any thread accesses first byte of TLS like this:
mov eax, gs:(0x0)

'\\\“ Stony Brook University CSE 506: Operating Systems

TLS Hllustration

0xb0001000 0xb0002000 0xb0003000
Tid=0 Tid=1 Tid=2
Set by the OS
kernel during
context switch
Thread 0 Registers Thread 2 Registers

gs: = 0xb0001000 gs: = 0xb0002000 gs: = 0xb0003000

printf (“My thread id is %d\n”, gs:tid);

‘* Stony Brook University CSE 506: Operating Systems

a5

Viva segmentation!
* My undergrad OS course treated segmentation as a
historical artifact
— Yet still widely (ab)used
— Also used for sandboxing in vx32, Native Client
— Used to implement early versions of VMware
* Counterpoint: TLS hack is just compensating for lack
of general-purpose registers
* Either way, all but fs and gs are deprecated in x64

'\\\“ Stony Brook University CSE 506: Operating Systems

Microsoft interview question

* Suppose | am on a low-memory x86 system (<4MB).
| don’t care about swapping or addressing more than
4MB.

* How can | keep paging space overhead at one page?
— Recall that the CPU requires 2 levels of addr. translation

‘* Stony Brook University CSE 506: Operating Systems

Solution sketch

* A 4MB address space will only use the low 22 bits of
the address space.

— So the first level translation will always hit entry 0

* Map the page table’s physical address at entry 0
— First translation will “loop” back to the page table
— Then use page table normally for 4MB space

¢ Assumes correct programs will not read address 0
— Getting null pointers early is nice

— Challenge: Refine the solution to still get null pointer
exceptions

QY stony Brook University

CSE 506: Operating Systems

¢ Lab 2 will be fun

Conclusion

3/14/16

QN stony Brook Universiy

CSE 506: Operating Systems

Housekeeping
¢ Reminder: sign up for course mailing list
— Read the whole thing before posting
— If you have an issue, please post if resolved (and how!)
¢ Checkpoint your VM before changing things
— Instructions to follow soon
— You break it, you buy it

