5

\
N \
" A Y £
(38 -~
L~ :
.
LS §
.
"
Y
|
e b
1
B g, C
.8 v/ .\'.w
' .l.‘., |
- —..,
|
| o~
P > !
;
| \.f\l.—
- hU
- p .
.)‘ ‘l

p _
) = )

do ™ -

S. ¢ ) " .

¢ rﬂ“ B
- ...
9 .

e 8 so0. -8
- - H




MAC vs. DAC

+ By default, Unix/Linux provides Discretionary Access
Control

The user (subject) has discretion to set security policies (or
not)

Example: I may ‘chmod o+a’ the file containing 506
grades, which violates university privacy policies

+ Mandatory Access Control enforces a central policy on
a system

Example: MAC policies can prohibit me from sharing 506
grades



SEL1nux

+ Like the Windows 2k ACLs, one key goal 1s enforcing
the principle of least authority

No ‘root’ user
Several administrative roles with limited extra privileges

Example: Changing passwords does not require
administrative access to printers

+ The principle of least authority says you should only give
the minimum privilege needed

Reasoning: if ‘passwd’ is compromised (e.g., due to a
bufter overflow), we should limit the scope of the damage



SEL1nux

+ Also like Win2k ACLs, a goal 1s to specify fine-grained
access control permission to kernel objects

In service of principle of least authority
Read/write permissions are coarse

Lots of functions do more limited reads/write



SELinux + MAC

+ Unlike Win2k ACLs, MAC enforcement requires all
policies to be specified by an administrator
Users cannot change these policies

+ Multi-level security: Declassified, Secret, Top-Secret, etc.

In MLS, only a trusted declassifier can lower the secrecy
of a file

Users with appropriate privilege can read classified files,
but cannot output their contents to lower secrecy levels



Example

+ Suppose I want to read a secret file

4+ In SELinux, I transition to a secret role to do this

This role 1s restricted:
<+ Cannot write to the network

<+ Cannot write to declassified files

Secret files cannot be read in a declassified role

+ Idea: Policies often require applications/users to give up
some privileges (network) for others (access to secrets)



General principles

+ Secrecy (Bell-LaPadula)

No read up, no write down

In secret mode, you can’t write a declassified file, or read
top-secret data

+ Integrity (Biba)

No write up, no read down
A declassified user can’t write garbage into a secret file

A top-secret application can’t read input/load libraries
from an untrusted source (reduce risk of compromise)



SEL1nux Policies

+ Written by an administrator in a SEL1nux-specific
language

Often written by an expert at Red Hat and installed
wholesale

Difficult to modify or write from scratch

+ Very expansive---covers all sorts of subjects, objects, and
verbs



Key Points of Interest

+ Role-Based Access Control (RBAC)
+ Type Enforcement
+ Linux Security Modules (LSM)

Labeling and persistence



Role-Based Access
Control

+ Idea: Extend or restrict user rights with a role that
captures what they are trying to do

+ Example: I may browse the web, grade labs, and
administer a web server

Create a role for each, with different privileges

My grader role may not have network access, except to
blackboard

My web browsing role may not have access to my home
directory files

My admin role and web roles can’t access students’ labs



Roles vs. Restricted
Context

Win2k ACLs allow a user to create processes with a
subset of his/her privileges

Roles provide the same functionality

But also allow a user to add privileges, such as
administrative rights

Roles may also have policy restrictions on who/when/
how roles are changed

Not just anyone (or any program) can get admin privileges



The power of RBAC

<+ Conditional access control

+ Example: Don’t let this file go out on the internet

Create secret file role

+ No network access, can’t write any files except other secret
files

+ Process cannot change roles, only exit

4 Process can read secret files

I challenge you to express this policy in Unix permissions!



Roles vs. Specific Users

+ Policies are hard to write
+ Roles allow policies to be generalized

Users everywhere want similar restrictions on their
browser
+ Roles eliminate the need to re-tailor the policy file for
every user

Anyone can transition to the browser role



Type Enforcement

+ Very much like the fine-grained ACLs we saw last time

+ Rather than everything being a file, objects are given a
more specific type

Type includes a set of possible actions on the object

+ E.g., Socket: create, listen, send, recv, close

Type includes ACLs based on roles



Type examples

+ Device types:

agp_device_t - AGP device (/dev/agpgart)
console_device_t - Console device (/dev/console)

mouse_device_t - Mouse (/dev/mouse)

+ File types:

fs_t - Defaults file type
etc_aliases_t - /etc/aliases and related files

bin_t - Files in /bin



More type examples

+ Networking:

netif_eth0_t — Interface ethQ
port_t — TCP/IP port
tcp_socket_t — TCP socket

+ /proc types

proc_t - /proc and related files
sysctl_t - /proc/sys and related files
sysctl_fs_t - /proc/sys/fs and related files



Detailed example

+ ping_exec_t type associated with ping binary
+ Policies for ping_exec_t:

Restrict who can transition into ping_t domain
+ Admins for sure, and init scripts

+ Regular users: admin can configure

ping_t domain (executing process) allowed to:
+ Use shared libraries

+ Use the network

<+ Call ypbind (for hostname lookup in YP/NIS)



Ping cont.

+ ping_t domain process can also:

Read certain files in /etc

Create Unix socket streams

Create raw ICMP sockets + send/recv on them on any interface
setuid (Why? Don’t know)

Access the terminal

Get file system attributes and search /var (mostly harmless
operations that would pollute the logs if disallowed)

+ Violate least privilege to avoid modification!



Full ping policy

01 type ping_t, domain, privlog;

02 type ping_exec_t, file_type, sysadmfile, exec_type;
03 role sysadm_r types ping_t;

8%1 role system_r types ping_t;

06 # Transition into this domain when you run this
program.

07 domain_auto_trans(sysadm_t, ping_exec_t, ping_t)

08. domain_auto_trans(initrc_t, ping_exec_t, ping_t)
09

10 uses_shlib(ping_t)

11 can_network(ping_t)

12 general_domain_access(ping_t)

13 allow ping_t { etc_t resolv_conf_t }:file { getattr
read };

14 allow ping_t self:unix_stream_socket
create_socket_perms;

15

16 # Let ping create raw ICMP packets.

17 allow ping_t self:rawip_socket {create ioctl read
write bind getopt setopt};

18 allow ping_t any_socket_t:rawip_socket sendto;

19

20 auditallow ping_t any_socket_t:rawip_socket
sendto;

21

22 # Let ping receive ICMP replies.

23 allow ping_t { self icmp_socket_t }:rawip_socket
recvfrom;

24

25 # Use capabilities.

%g allow ping_t self:capability { net_raw setuid };

28 # Access the terminal.

29 allow ping_t admin_tty_type:chr_file
rw_file_perms;

30 ifdef(" gnome-pty-helper.te', “allow ping_t
sysadm_gph_t:fd use;")

31 allow ping_t privfd:fd use;

32

33 dontaudit ping_t fs_t:filesystem getattr;
34

35 # it tries to access /var/run

36 dontaudit ping_t var_t:dir search;



Linux Security Modules

+ Culturally, top Linux developers care about writing a
good kernel

Not as much about security
Different specializations
+ Their goal: Modularize security as much as humanly

possible

Security folks write modules that you can load if you care
about security; kernel developers don’t have to worry
about understanding security



Basic deal

+ Linux Security Modules API:

Linux developers put dozens of access control hooks all
over the kernel

+ See include/linux/security.h

LSM writer can implement access control functions called
by these hooks that enforce arbitrary policies

Linux also adds opaque “security” pointer that LSM can
use to store security info they need in processes, 1nodes,
sockets, etc.



SEL1nux example

+ A task has an associated security pointer

Stores current role

+ An 1mnode also has a security pointer

Stores type and policy rules

<+ Initialization hooks for both called when created



SEL1nux example, cont.

<+ A task reads the inode

VEFS function calls LSM hook, with inode and task pointer
LSM reads policy rules from 1node

+ Suppose the file requires a role transition for read

LSM hook modifies task’s security data to change its role

Then read allowed to proceed



Problem: Persistence

+ All of these security hooks are great for in memory data
structures

E.g., VES inodes

+ How do you ensure the policy associated with a given
file persists across reboots?



Extended Attributes

4+ In addition to 9+ standard Unix attributes, associate a small
key/value store with an on-disk inode
User can tag a file with arbitrary metadata

Key must be a string, prefixed with a domain

+ User, trusted, system, security
Users must use ‘user’ domain

LSM uses ‘security’ domain

+ Only a few file systems support extended attributes

E.g., ext2/3/4; not NFS, FAT32



Persistence

All ACLs, type information, etc. are stored in extended
attributes for persistence

Each file must be /labeled for MAC enforcement
Labeling is the generic problem of assigning a type or
security context to each object/file in the system

Can be complicated

SELinux provides some tools to help, based on standard
system file names and educated guesses



Summary

+ SELinux augments Linux with a much more restrictive
security model

MAC vs. DAC
+ Understand Roles and Types

<+ Basic ideas of LSM

Labeling and extended attributes



