
CSE	506:	Opera.ng	Systems	

Scheduling,	Part	2	
	

Don	Porter	

1	



CSE	506:	Opera.ng	Systems	

Logical	Diagram	

Memory		
Management	

CPU	
Scheduler	

User	

Kernel	

Hardware	

Binary	
Formats	

Consistency	

System	Calls	

Interrupts	 Disk	 Net	

RCU	 File	System	

Device	
Drivers	

Networking	 Sync	

Memory	
Allocators	 Threads	

Today’s	Lecture	
Switching	to	CPU	

scheduling	

2	



CSE	506:	Opera.ng	Systems	

Last	Ime…	
•  Scheduling	overview,	key	trade-offs,	etc.	
•  O(1)	scheduler	–	older	Linux	scheduler	

•  Today:		
–  Completely	Fair	Scheduler	(CFS)	–	new	hotness	
–  Other	advanced	scheduling	issues	

•  Real-Ime	scheduling	
•  Kernel	preempIon	

3	



CSE	506:	Opera.ng	Systems	

Fair	Scheduling	
•  Simple	idea:	50	tasks,	each	should	get	2%	of	CPU	
Ime	

•  Do	we	really	want	this?	
– What	about	prioriIes?	
–  InteracIve	vs.	batch	jobs?	
–  CPU	topologies?	
–  Per-user	fairness?		

•  Alice	has	one	task	and	Bob	has	49;	why	should	Bob	get	98%	of	CPU	
Ime?	

–  Etc.?	

4	



CSE	506:	Opera.ng	Systems	

Editorial	
•  Real	issue:	O(1)	scheduler	bookkeeping	is	
complicated	
–  HeurisIcs	for	various	issues	makes	it	more	complicated	
–  HeurisIcs	can	end	up	working	at	cross-purposes	

•  Socware	engineering	observaIon:	
–  Kernel	developers	beder	understood	scheduling	issues	
and	workload	characterisIcs,	could	make	more	informed	
design	choice	

•  Elegance:	Structure	(and	complexity)	of	soluIon	
matches	problem	

5	



CSE	506:	Opera.ng	Systems	

CFS	idea	
•  Back	to	a	simple	list	of	tasks	(conceptually)	
•  Ordered	by	how	much	Ime	they’ve	had	
–  Least	Ime	to	most	Ime	

•  Always	pick	the	“neediest”	task	to	run	
–  UnIl	it	is	no	longer	neediest	
–  Then	re-insert	old	task	in	the	Imeline	
–  Schedule	the	new	neediest	

6	



CSE	506:	Opera.ng	Systems	

CFS	Example	

5	 10	 15	 22	 26	

List	sorted	by	
how	many	

“Icks”	the	task	
has	had	

Schedule	
“neediest”	task	

7	



CSE	506:	Opera.ng	Systems	

CFS	Example	

10	 15	 22	 26	

11	
Once	no	longer	
the	neediest,	put	
back	on	the	list	

8	



CSE	506:	Opera.ng	Systems	

But	lists	are	inefficient	
•  Duh!	That’s	why	we	really	use	a	tree	
–  Red-black	tree:	9/10	Linux	developers	recommend	it	

•  log(n)	Ime	for:	
–  Picking	next	task	(i.e.,	search	for	lec-most	task)	
–  Pulng	the	task	back	when	it	is	done	(i.e.,	inserIon)	
–  Remember:	n	is	total	number	of	tasks	on	system	

9	



CSE	506:	Opera.ng	Systems	

Details	
•  Global	virtual	clock:	Icks	at	a	fracIon	of	real	Ime	
–  Runqueue->fair_clock	
–  FracIon	is	number	of	total	tasks	

•  Each	task	counts	how	many	clock	Icks	it	has	had	
•  Example:	4	tasks,	equal	number	of	virtual	Icks	
–  Global	vclock	Icks	once	every	4	real	Icks	
–  Each	task	scheduled	for	one	real	Ick;	advances	local	clock	
by	one	Ick	

10	



CSE	506:	Opera.ng	Systems	

More	details	
•  Task’s	Icks	make	key	in	RB-tree	
–  Fewest	Ick	count	get	serviced	first	

•  No	more	runqueues	
–  Just	a	single	tree-structured	Imeline	

11	



CSE	506:	Opera.ng	Systems	

CFS	Example	(more	realisIc)	

1	

4	

8	

10	

12	

Global	Ticks:	12	 •  Tasks	sorted	by	Icks	
executed	

•  4	Icks	for	first	task	
•  Reinsert	into	list	
•  1	Ick	to	new	first	task	

5	5	

12	



CSE	506:	Opera.ng	Systems	

Edge	case	1	
•  What	about	a	new	task?			
–  If	task	Icks	start	at	zero,	doesn’t	it	get	to	unfairly	run	for	a	
long	Ime?	

•  Strategies:	
–  Could	iniIalize	to	current	Ime	(start	at	right)	
–  Could	get	half	of	parent’s	deficit	

13	



CSE	506:	Opera.ng	Systems	

What	happened	to	prioriIes?	
•  PrioriIes	let	me	be	deliberately	unfair	
–  This	is	a	useful	feature	

•  In	CFS,	prioriIes	weigh	the	length	of	a	task’s	“Ick”	
•  Example:	
–  For	a	high-priority	task,	a	virtual,	task-local	Ick	may	last	
for	10	actual	clock	Icks	

–  For	a	low-priority	task,	a	virtual,	task-local	Ick	may	only	
last	for	1	actual	clock	Ick	

•  Result:	Higher-priority	tasks	run	longer,	low-priority	
tasks	make	some	progress	

Note:	10:1	raIo	is	a	
made-up	example.		
See	code	for	real	

weights.	

14	



CSE	506:	Opera.ng	Systems	

InteracIve	latency	
•  Recall:	GUI	programs	are	I/O	bound	
– We	want	them	to	be	responsive	to	user	input	
–  Need	to	be	scheduled	as	soon	as	input	is	available	
– Will	only	run	for	a	short	Ime	

15	



CSE	506:	Opera.ng	Systems	

GUI	program	strategy	
•  Just	like	O(1)	scheduler,	CFS	takes	blocked	programs	
out	of	the	RB-tree	of	runnable	processes	

•  Virtual	clock	conInues	Icking	while	tasks	are	
blocked	
–  Increasingly	large	deficit	between	task	and	global	vclock	

•  When	a	GUI	task	is	runnable,	generally	goes	to	the	
front	
–  DramaIcally	lower	vclock	value	than	CPU-bound	jobs	
–  Reminder:	“front”	is	lec	side	of	tree	

16	



CSE	506:	Opera.ng	Systems	

Other	refinements	
•  Per	group	or	user	scheduling	
–  Real	to	virtual	Ick	raIo	becomes	a	funcIon	of	number	of	
both	global	and	user’s/group’s	tasks	

•  Unclear	how	CPU	topologies	are	addressed		

17	



CSE	506:	Opera.ng	Systems	

Recap:	Ticks	galore!	
•  Real	Ime	is	measured	by	a	Imer	device,	which	
“Icks”	at	a	certain	frequency	by	raising	a	Imer	
interrupt	

•  A	process’s	virtual	Ick	is	some	number	of	real	Icks	
– We	implement	prioriIes,	per-user	fairness,	etc.	by	tuning	
this	raIo	

•  The	global	Ick	counter	tracks	maximum	possible	
virtual	Icks	
–  Used	to	calculate	one’s	deficit	

18	



CSE	506:	Opera.ng	Systems	

CFS	Summary	
•  Simple	idea:	logically	a	queue	of	runnable	tasks,	
ordered	by	who	has	had	the	least	CPU	Ime	

•  Implemented	with	a	tree	for	fast	lookup,	reinserIon	
•  Global	clock	counts	virtual	Icks	
•  PrioriIes	and	other	features/tweaks	implemented	by	
playing	games	with	length	of	a	virtual	Ick	
–  Virtual	Icks	vary	in	wall-clock	length	per-process	

19	



CSE	506:	Opera.ng	Systems	

Real-Ime	scheduling	
•  Different	model:	need	to	do	a	modest	amount	of	
work	by	a	deadline	

•  Example:	
–  Audio	applicaIon	needs	to	deliver	a	frame	every	nth	of	a	
second	

–  Too	many	or	too	few	frames	unpleasant	to	hear	

20	



CSE	506:	Opera.ng	Systems	

Strawman	
•  If	I	know	it	takes	n	Icks	to	process	a	frame	of	audio,	
just	schedule	my	applicaIon	n	Icks	before	the	
deadline	

•  Problems?	
•  Hard	to	accurately	esImate	n	
–  Interrupts	
–  Cache	misses	
–  Disk	accesses	
–  Variable	execuIon	Ime	depending	on	inputs	

21	



CSE	506:	Opera.ng	Systems	

Hard	problem	
•  Gets	even	worse	with	mulIple	applicaIons	+	
deadlines	

•  May	not	be	able	to	meet	all	deadlines	
•  InteracIons	through	shared	data	structures	worsen	
variability	
–  Block	on	locks	held	by	other	tasks	
–  Cached	file	system	data	gets	evicted	
–  OpIonal	reading	(interesIng):	Nemesis	–	an	OS	without	
shared	caches	to	improve	real-Ime	scheduling	

22	



CSE	506:	Opera.ng	Systems	

Simple	hack	
•  Create	a	highest-priority	scheduling	class	for	real-
Ime	process	
–  SCHED_RR	–	RR	==	round	robin	

•  RR	tasks	fairly	divide	CPU	Ime	amongst	themselves	
–  Pray	that	it	is	enough	to	meet	deadlines	
–  If	so,	other	tasks	share	the	lec-overs	

•  AssumpIon:	like	GUI	programs,	RR	tasks	will	spend	
most	of	their	Ime	blocked	on	I/O	
–  Latency	is	key	concern	

23	



CSE	506:	Opera.ng	Systems	

Next	issue:	Kernel	Ime	
•  Should	Ime	spent	in	the	OS	count	against	an	
applicaIon’s	Ime	slice?	
–  Yes:	Time	in	a	system	call	is	work	on	behalf	of	that	task	
–  No:	Time	in	an	interrupt	handler	may	be	compleIng	I/O	
for	another	task	

24	



CSE	506:	Opera.ng	Systems	

Timeslices	+	syscalls	
•  System	call	Imes	vary	
•  Context	switches	generally	at	system	call	boundary	
–  Can	also	context	switch	on	blocking	I/O	operaIons	

•  If	a	Ime	slice	expires	inside	of	a	system	call:	
–  Task	gets	rest	of	system	call	“for	free”	

•  Steals	from	next	task	

–  PotenIally	delays	interacIve/real	Ime	task	unIl	finished	

25	



CSE	506:	Opera.ng	Systems	

Idea:	Kernel	PreempIon	
•  Why	not	preempt	system	calls	just	like	user	code?	
•  Well,	because	it	is	harder,	duh!	
•  Why?	
– May	hold	a	lock	that	other	tasks	need	to	make	progress	
– May	be	in	a	sequence	of	HW	config	opIons	that	assumes	
it	won’t	be	interrupted	

•  General	strategy:	allow	fragile	code	to	disable	
preempIon	
–  Cf:	Interrupt	handlers	can	disable	interrupts	if	needed	

26	



CSE	506:	Opera.ng	Systems	

Kernel	PreempIon	
•  ImplementaIon:	actually	not	too	bad	
–  EssenIally,	it	is	transparently	disabled	with	any	locks	held	
–  A	few	other	places	disabled	by	hand	

•  Result:	UI	programs	a	bit	more	responsive	

27	



CSE	506:	Opera.ng	Systems	

Summary	
•  Understand:	
–  Completely	Fair	Scheduler	(CFS)	
–  Real-Ime	scheduling	issues	
–  Kernel	preempIon	

28	


