
CSE	506:	Opera.ng	Systems	

Scheduling,	Part	2	
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Last	Ime…	
•  Scheduling	overview,	key	trade-offs,	etc.	
•  O(1)	scheduler	–	older	Linux	scheduler	

•  Today:		
–  Completely	Fair	Scheduler	(CFS)	–	new	hotness	
–  Other	advanced	scheduling	issues	

•  Real-Ime	scheduling	
•  Kernel	preempIon	
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Fair	Scheduling	
•  Simple	idea:	50	tasks,	each	should	get	2%	of	CPU	
Ime	

•  Do	we	really	want	this?	
– What	about	prioriIes?	
–  InteracIve	vs.	batch	jobs?	
–  CPU	topologies?	
–  Per-user	fairness?		

•  Alice	has	one	task	and	Bob	has	49;	why	should	Bob	get	98%	of	CPU	
Ime?	

–  Etc.?	
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Editorial	
•  Real	issue:	O(1)	scheduler	bookkeeping	is	
complicated	
–  HeurisIcs	for	various	issues	makes	it	more	complicated	
–  HeurisIcs	can	end	up	working	at	cross-purposes	

•  Socware	engineering	observaIon:	
–  Kernel	developers	beder	understood	scheduling	issues	
and	workload	characterisIcs,	could	make	more	informed	
design	choice	

•  Elegance:	Structure	(and	complexity)	of	soluIon	
matches	problem	
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CFS	idea	
•  Back	to	a	simple	list	of	tasks	(conceptually)	
•  Ordered	by	how	much	Ime	they’ve	had	
–  Least	Ime	to	most	Ime	

•  Always	pick	the	“neediest”	task	to	run	
–  UnIl	it	is	no	longer	neediest	
–  Then	re-insert	old	task	in	the	Imeline	
–  Schedule	the	new	neediest	
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CFS	Example	
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CFS	Example	
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But	lists	are	inefficient	
•  Duh!	That’s	why	we	really	use	a	tree	
–  Red-black	tree:	9/10	Linux	developers	recommend	it	

•  log(n)	Ime	for:	
–  Picking	next	task	(i.e.,	search	for	lec-most	task)	
–  Pulng	the	task	back	when	it	is	done	(i.e.,	inserIon)	
–  Remember:	n	is	total	number	of	tasks	on	system	
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Details	
•  Global	virtual	clock:	Icks	at	a	fracIon	of	real	Ime	
–  Runqueue->fair_clock	
–  FracIon	is	number	of	total	tasks	

•  Each	task	counts	how	many	clock	Icks	it	has	had	
•  Example:	4	tasks,	equal	number	of	virtual	Icks	
–  Global	vclock	Icks	once	every	4	real	Icks	
–  Each	task	scheduled	for	one	real	Ick;	advances	local	clock	
by	one	Ick	
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More	details	
•  Task’s	Icks	make	key	in	RB-tree	
–  Fewest	Ick	count	get	serviced	first	

•  No	more	runqueues	
–  Just	a	single	tree-structured	Imeline	
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CFS	Example	(more	realisIc)	
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Global	Ticks:	12	 •  Tasks	sorted	by	Icks	
executed	

•  4	Icks	for	first	task	
•  Reinsert	into	list	
•  1	Ick	to	new	first	task	
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Edge	case	1	
•  What	about	a	new	task?			
–  If	task	Icks	start	at	zero,	doesn’t	it	get	to	unfairly	run	for	a	
long	Ime?	

•  Strategies:	
–  Could	iniIalize	to	current	Ime	(start	at	right)	
–  Could	get	half	of	parent’s	deficit	
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What	happened	to	prioriIes?	
•  PrioriIes	let	me	be	deliberately	unfair	
–  This	is	a	useful	feature	

•  In	CFS,	prioriIes	weigh	the	length	of	a	task’s	“Ick”	
•  Example:	
–  For	a	high-priority	task,	a	virtual,	task-local	Ick	may	last	
for	10	actual	clock	Icks	

–  For	a	low-priority	task,	a	virtual,	task-local	Ick	may	only	
last	for	1	actual	clock	Ick	

•  Result:	Higher-priority	tasks	run	longer,	low-priority	
tasks	make	some	progress	

Note:	10:1	raIo	is	a	
made-up	example.		
See	code	for	real	

weights.	
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InteracIve	latency	
•  Recall:	GUI	programs	are	I/O	bound	
– We	want	them	to	be	responsive	to	user	input	
–  Need	to	be	scheduled	as	soon	as	input	is	available	
– Will	only	run	for	a	short	Ime	
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GUI	program	strategy	
•  Just	like	O(1)	scheduler,	CFS	takes	blocked	programs	
out	of	the	RB-tree	of	runnable	processes	

•  Virtual	clock	conInues	Icking	while	tasks	are	
blocked	
–  Increasingly	large	deficit	between	task	and	global	vclock	

•  When	a	GUI	task	is	runnable,	generally	goes	to	the	
front	
–  DramaIcally	lower	vclock	value	than	CPU-bound	jobs	
–  Reminder:	“front”	is	lec	side	of	tree	
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Other	refinements	
•  Per	group	or	user	scheduling	
–  Real	to	virtual	Ick	raIo	becomes	a	funcIon	of	number	of	
both	global	and	user’s/group’s	tasks	

•  Unclear	how	CPU	topologies	are	addressed		
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Recap:	Ticks	galore!	
•  Real	Ime	is	measured	by	a	Imer	device,	which	
“Icks”	at	a	certain	frequency	by	raising	a	Imer	
interrupt	

•  A	process’s	virtual	Ick	is	some	number	of	real	Icks	
– We	implement	prioriIes,	per-user	fairness,	etc.	by	tuning	
this	raIo	

•  The	global	Ick	counter	tracks	maximum	possible	
virtual	Icks	
–  Used	to	calculate	one’s	deficit	
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CFS	Summary	
•  Simple	idea:	logically	a	queue	of	runnable	tasks,	
ordered	by	who	has	had	the	least	CPU	Ime	

•  Implemented	with	a	tree	for	fast	lookup,	reinserIon	
•  Global	clock	counts	virtual	Icks	
•  PrioriIes	and	other	features/tweaks	implemented	by	
playing	games	with	length	of	a	virtual	Ick	
–  Virtual	Icks	vary	in	wall-clock	length	per-process	
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Real-Ime	scheduling	
•  Different	model:	need	to	do	a	modest	amount	of	
work	by	a	deadline	

•  Example:	
–  Audio	applicaIon	needs	to	deliver	a	frame	every	nth	of	a	
second	

–  Too	many	or	too	few	frames	unpleasant	to	hear	

20	



CSE	506:	Opera.ng	Systems	

Strawman	
•  If	I	know	it	takes	n	Icks	to	process	a	frame	of	audio,	
just	schedule	my	applicaIon	n	Icks	before	the	
deadline	

•  Problems?	
•  Hard	to	accurately	esImate	n	
–  Interrupts	
–  Cache	misses	
–  Disk	accesses	
–  Variable	execuIon	Ime	depending	on	inputs	
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Hard	problem	
•  Gets	even	worse	with	mulIple	applicaIons	+	
deadlines	

•  May	not	be	able	to	meet	all	deadlines	
•  InteracIons	through	shared	data	structures	worsen	
variability	
–  Block	on	locks	held	by	other	tasks	
–  Cached	file	system	data	gets	evicted	
–  OpIonal	reading	(interesIng):	Nemesis	–	an	OS	without	
shared	caches	to	improve	real-Ime	scheduling	
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Simple	hack	
•  Create	a	highest-priority	scheduling	class	for	real-
Ime	process	
–  SCHED_RR	–	RR	==	round	robin	

•  RR	tasks	fairly	divide	CPU	Ime	amongst	themselves	
–  Pray	that	it	is	enough	to	meet	deadlines	
–  If	so,	other	tasks	share	the	lec-overs	

•  AssumpIon:	like	GUI	programs,	RR	tasks	will	spend	
most	of	their	Ime	blocked	on	I/O	
–  Latency	is	key	concern	

23	



CSE	506:	Opera.ng	Systems	

Next	issue:	Kernel	Ime	
•  Should	Ime	spent	in	the	OS	count	against	an	
applicaIon’s	Ime	slice?	
–  Yes:	Time	in	a	system	call	is	work	on	behalf	of	that	task	
–  No:	Time	in	an	interrupt	handler	may	be	compleIng	I/O	
for	another	task	

24	



CSE	506:	Opera.ng	Systems	

Timeslices	+	syscalls	
•  System	call	Imes	vary	
•  Context	switches	generally	at	system	call	boundary	
–  Can	also	context	switch	on	blocking	I/O	operaIons	

•  If	a	Ime	slice	expires	inside	of	a	system	call:	
–  Task	gets	rest	of	system	call	“for	free”	

•  Steals	from	next	task	

–  PotenIally	delays	interacIve/real	Ime	task	unIl	finished	
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Idea:	Kernel	PreempIon	
•  Why	not	preempt	system	calls	just	like	user	code?	
•  Well,	because	it	is	harder,	duh!	
•  Why?	
– May	hold	a	lock	that	other	tasks	need	to	make	progress	
– May	be	in	a	sequence	of	HW	config	opIons	that	assumes	
it	won’t	be	interrupted	

•  General	strategy:	allow	fragile	code	to	disable	
preempIon	
–  Cf:	Interrupt	handlers	can	disable	interrupts	if	needed	
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Kernel	PreempIon	
•  ImplementaIon:	actually	not	too	bad	
–  EssenIally,	it	is	transparently	disabled	with	any	locks	held	
–  A	few	other	places	disabled	by	hand	

•  Result:	UI	programs	a	bit	more	responsive	
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Summary	
•  Understand:	
–  Completely	Fair	Scheduler	(CFS)	
–  Real-Ime	scheduling	issues	
–  Kernel	preempIon	
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