
CSE	506:	Opera.ng	Systems	

Page	Frame	Reclaiming	
	

Don	Porter	

1	

CSE	506:	Opera.ng	Systems	

Logical	Diagram	

Memory		
Management	

CPU	
Scheduler	

User	

Kernel	

Hardware	

Binary	
Formats	

Consistency	

System	Calls	

Interrupts	 Disk	 Net	

RCU	 File	System	

Device	
Drivers	

Networking	 Sync	

Memory	
Allocators	 Threads	

Today’s	Lecture	
(kernel	level	mem.	
management)	

2	

CSE	506:	Opera.ng	Systems	

Last	Lme…	
•  We	saw	how	you	go	from	a	file	or	process	to	the	
consLtuent	memory	pages	making	it	up	
– Where	in	memory	is	page	2	of	file	“foo”?	
–  Or,	where	is	address	0x1000	in	process	100?	

•  Today,	we	look	at	reverse	mapping:	
–  Given	physical	page	X,	what	has	a	reference	to	it?	

•  Then	we	will	look	at	page	reclamaLon:	
– Which	page	is	the	best	candidate	to	reuse?	

3	

CSE	506:	Opera.ng	Systems	

MoLvaLon:	Swapping	
•  Most	OSes	allow	virtual	memory	to	become	
“overcommi]ed”	
–  Processes	may	allocate	more	virtual	memory	than	there	is	
physical	memory	in	the	system	

•  How	does	this	work?	
–  OS	transparently	takes	some	pages	away	and	writes	them	
to	disk		

–  I.e.,	the	OS	“swaps”	them	to	disk	and	reassigns	the	
physical	page	

4	

CSE	506:	Opera.ng	Systems	

Swapping,	cont.	
•  If	we	swap	a	page	out,	what	do	we	do	with	the	old	
page	table	entries	poinLng	to	it?	
– We	clear	the	PTE_P	bit	so	that	we	get	a	page	fault	

•  What	do	we	do	when	we	get	a	page	fault	for	a	
swapped	page?	
– We	need	to	allocate	another	physical	page,	reread	the	
page	from	disk,	and	re-map	the	new	page	

5	

CSE	506:	Opera.ng	Systems	

Choices,	choices…	
•  The	Linux	kernel	decides	what	to	swap	based	on	
scanning	the	page	descriptor	table	
–  Similar	to	the	Pages	array	in	JOS	
–  I.e.,	primarily	by	looking	at	physical	pages	

•  Today’s	lecture:	
1) Given	a	physical	page	descriptor,	how	do	I	find	all	of	the	
mappings?		Remember,	pages	can	be	shared.	

2) What	strategies	should	we	follow	when	selecLng	a	page	to	
swap?	

6	

CSE	506:	Opera.ng	Systems	

Shared	memory	
•  Recall:	A	vma	represents	a	region	of	a	process’s	
virtual	address	space	

•  A	vma	is	private	to	a	process	
•  Yet	physical	pages	can	be	shared	
–  The	pages	caching	libc	in	memory	
–  Even	anonymous	applicaLon	data	pages	can	be	shared,	
afer	a	copy-on-write	fork()	

•  So	far,	we	have	elided	this	issue.		No	longer!	

7	

CSE	506:	Opera.ng	Systems	

Anonymous	memory	
•  When	anonymous	memory	is	mapped,	a	vma	is	
created	
–  Pages	are	added	on	demand	(laziness	rules!)	

•  When	the	first	page	is	added,	an	anon_vma	structure	
is	also	created	
–  vma	and	page	descriptor	point	to	anon_vma	
–  anon_vma	stores	all	mapping	vmas	in	a	circular	linked	list	

•  When	a	mapping	becomes	shared	(e.g.,	COW	fork),	
create	a	new	VMA,	link	it	on	the	anon_vma	list	

8	

CSE	506:	Opera.ng	Systems	

Example	

Physical	memory	

Process	A	 Process	B	(forked)	

Virtual	memory	

Page	
Table

s	

Physical	page	descriptors	

vma	 vma	
anon	
vma	

9	

CSE	506:	Opera.ng	Systems	

Example	(2nd	Page)	

Physical	memory	

Process	A	 Process	B	

Virtual	memory	

Page	
Table

s	

Physical	page	descriptors	

vma	 vma	
anon	
vma	

No	update?	
Anonymous	
VMAs	tend	to	

be	COW	

10	

CSE	506:	Opera.ng	Systems	

Reverse	mapping	
•  Suppose	I	pick	a	physical	page	X,	what	is	it	being	
used	for?	

•  Many	ways	you	could	represent	this	
•  Remember,	some	systems	have	a	lot	of	physical	
memory	
–  So	we	want	to	keep	fixed,	per-page	overheads	low	
–  Can	dynamically	allocate	some	extra	bookkeeping	

11	

CSE	506:	Opera.ng	Systems	

Linux	strategy	
•  Add	2	fields	to	each	page	descriptor	
•  _mapcount:	Tracks	the	number	of	acLve	mappings	
–  -1	==	unmapped	
–  0	==	single	mapping	(unshared)	
–  1+	==	shared	

•  mapping:	Pointer	to	the	owning	object	
–  Address	space	(file/device)	or	anon_vma	(process)	
–  Least	Significant	Bit	encodes	the	type	(1	==	anon_vma)	

12	

CSE	506:	Opera.ng	Systems	

Anonymous	page	lookup	
•  Given	a	physical	address,	page	descriptor	index	is	
just	simple	division	by	page	size	

•  Given	a	page	descriptor:	
–  Look	at	_mapcount	to	see	how	many	mappings.		If	0+:	
–  Read	mapping	to	get	pointer	to	the	anon_vma	

•  Be	sure	to	check,	mask	out	low	bit	

•  Iterate	over	vmas	on	the	anon_vma	list	
–  Linear	scan	of	page	table	entries	for	each	vma	

•  vma->	mm	->	pgdir	

13	

CSE	506:	Opera.ng	Systems	

Example	

Physical	memory	

Process	A	 Process	B	

Virtual	memory	

Page	
Table

s	

Physical	page	descriptors	

vma	 vma	
anon	
vma	

Page	0x10000	
Divide	by	0x1000	(4k)	

Page	0x10	
_mapcount:	1	
mapping:		

(anon	vma	+	low	bit)	

foreach	vma	

Linear	scan		
of	page	tables	

14	

CSE	506:	Opera.ng	Systems	

File	vs.	anon	mappings	
•  Given	a	page	mapping	a	file,	we	store	a	pointer	in	its	
page	descriptor	to	the	inode	address	space	
–  page->index	caches	the	offset	into	the	file	being	mapped	

•  Now	to	find	all	processes	mapping	the	file…	
•  So,	let’s	just	do	the	same	thing	for	files	as	
anonymous	mappings,	no?	
–  Could	just	link	all	VMAs	mapping	a	file	into	a	linked	list	on	
the	inode’s	address_space.	

•  2	complicaLons:	

15	

CSE	506:	Opera.ng	Systems	

ComplicaLon	1	
•  Not	all	file	mappings	map	the	enLre	file	
– Many	map	only	a	region	of	the	file	

•  So,	if	I	am	looking	for	all	mappings	of	page	4	of	a	file	
a	linear	scan	of	each	mapping	may	have	to	filter	
vmas	that	don’t	include	page	4	

16	

CSE	506:	Opera.ng	Systems	

ComplicaLon	2	
•  IntuiLon:	anonymous	mappings	won’t	be	shared	
much	
–  How	many	children	won’t	exec	a	new	executable?	

•  In	contrast,	(some)	mapped	files	will	be	shared	a	lot	
–  Example:	libc	

•  Problem:	Lots	of	entries	on	the	list	+	many	that	
might	not	overlap	

•  SoluLon:	Need	some	sort	of	filter	

17	

CSE	506:	Opera.ng	Systems	

Priority	Search	Tree	
•  Idea:	binary	search	tree	that	uses	overlapping	ranges	
as	node	keys	
–  Bigger,	enclosing	ranges	are	the	parents,	smaller	ranges	
are	children	

–  Not	balanced	(in	Linux,	some	uses	balance	them)	

•  Use	case:	Search	for	all	ranges	that	include	page	N	
•  Most	of	that	logarithmic	lookup	goodness	you	love	
from	tree-structured	data!	

18	

CSE	506:	Opera.ng	Systems	

Figure	17-2		
(from	Understanding	the	Linux	Kernel)	

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

688 | Chapter 17: Page Frame Reclaiming

retrieved. Then the algorithm visits the children (1,2,3) and (2,0,2), but it discovers
that neither of them include the page.

We won’t be able, for lack of space, to describe in detail the data structures and the
functions that implement the Linux PSTs. We’ll only mention that a node of a PST is
represented by a prio_tree_node data structure, which is embedded in the shared.
prio_tree_node field of each memory region descriptor. The shared.vm_set data struc-
ture is used—as an alternative to shared.prio_tree_node—to insert the memory
region descriptor in a duplicate list of a PST node. PST nodes can be inserted and
removed by executing the vma_prio_tree_insert() and vma_prio_tree_remove() func-
tions; both of them receive as their parameters the address of a memory region
descriptor and the address of a PST root. Queries on the PST can be performed by exe-
cuting the vma_prio_tree_foreach macro, which implements a loop over all memory
region descriptors that includes at least one page in a specified range of linear
addresses.

The try_to_unmap_file() function

The try_to_unmap_file() function is invoked by try_to_unmap() to perform the
reverse mapping of mapped pages. This function is quite simple to describe when the
memory mapping is linear (see the section “Memory Mapping” in Chapter 16). In
this case, it performs the following actions:

1. Gets the page->mapping->i_mmap_lock spin lock.

2. Applies the vma_prio_tree_foreach() macro to the priority search tree whose
root is stored in the page->mapping->i_mmap field. For each vm_area_struct
descriptor found by the macro, the function invokes try_to_unmap_one() to try
to clear the Page Table entry of the memory region that contains the page (see
the earlier section “Reverse Mapping for Anonymous Pages”). If for some reason
this function returns a SWAP_FAIL value, or if the _mapcount field of the page
descriptor indicates that all Page Table entries referencing the page frame have
been found, the scanning terminates immediately.

Figure 17-2. A simple example of priority search tree

radix size heap

(a) (b)

0 1 2 3 4 5

0,5,5
0,2,2
0,4,4
2,3,5
2,0,2
1,2,3
0,0,0

0,0,0 0,2,2 1,2,3 2,0,2

0,5,5

0,4,4 2,3,5

•  Radix	–	start	of	interval,	heap	=	last	page	
•  Range	is	exclusive,	e.g.,	[0,	5)	

19	

CSE	506:	Opera.ng	Systems	

How	to	find	page	1?	

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

688 | Chapter 17: Page Frame Reclaiming

retrieved. Then the algorithm visits the children (1,2,3) and (2,0,2), but it discovers
that neither of them include the page.

We won’t be able, for lack of space, to describe in detail the data structures and the
functions that implement the Linux PSTs. We’ll only mention that a node of a PST is
represented by a prio_tree_node data structure, which is embedded in the shared.
prio_tree_node field of each memory region descriptor. The shared.vm_set data struc-
ture is used—as an alternative to shared.prio_tree_node—to insert the memory
region descriptor in a duplicate list of a PST node. PST nodes can be inserted and
removed by executing the vma_prio_tree_insert() and vma_prio_tree_remove() func-
tions; both of them receive as their parameters the address of a memory region
descriptor and the address of a PST root. Queries on the PST can be performed by exe-
cuting the vma_prio_tree_foreach macro, which implements a loop over all memory
region descriptors that includes at least one page in a specified range of linear
addresses.

The try_to_unmap_file() function

The try_to_unmap_file() function is invoked by try_to_unmap() to perform the
reverse mapping of mapped pages. This function is quite simple to describe when the
memory mapping is linear (see the section “Memory Mapping” in Chapter 16). In
this case, it performs the following actions:

1. Gets the page->mapping->i_mmap_lock spin lock.

2. Applies the vma_prio_tree_foreach() macro to the priority search tree whose
root is stored in the page->mapping->i_mmap field. For each vm_area_struct
descriptor found by the macro, the function invokes try_to_unmap_one() to try
to clear the Page Table entry of the memory region that contains the page (see
the earlier section “Reverse Mapping for Anonymous Pages”). If for some reason
this function returns a SWAP_FAIL value, or if the _mapcount field of the page
descriptor indicates that all Page Table entries referencing the page frame have
been found, the scanning terminates immediately.

Figure 17-2. A simple example of priority search tree

radix size heap

(a) (b)

0 1 2 3 4 5

0,5,5
0,2,2
0,4,4
2,3,5
2,0,2
1,2,3
0,0,0

0,0,0 0,2,2 1,2,3 2,0,2

0,5,5

0,4,4 2,3,5

•  If	in	range:	search	both	children	
•  If	out	of	range:	search	only	right	or	lef	child	

All	

All	
Right	 All	All	

Lef	

20	

CSE	506:	Opera.ng	Systems	

PST	+	vmas	
•  Each	node	in	the	PST	contains	a	list	of	vmas	mapping	
that	interval	
–  Only	one	vma	for	unusual	mappings	

•  So	what	about	duplicates	(ex:	all	programs	using	
libc)?	
–  A	very	long	list	on	the	(0,	filesz,	filesz)	node	

•  I.e.,	the	root	of	the	tree	

21	

CSE	506:	Opera.ng	Systems	

Reverse	lookup,	review	
•  Given	a	page,	how	do	I	find	all	mappings?	

22	

CSE	506:	Opera.ng	Systems	

Problem	2:	Reclaiming	
•  UnLl	there	is	a	problem,	kernel	caches	and	processes	
can	go	wild	allocaLng	memory	

•  SomeLmes	there	is	a	problem,	and	the	kernel	needs	
to	reclaim	physical	pages	for	other	uses	
–  Low	memory,	hibernaLon,	free	memory	below	a	“goal”	

•  Which	ones	to	pick?	
–  Goal:	Minimal	performance	disrupLon	on	a	wide	range	of	
systems	(from	phones	to	supercomputers)	

23	

CSE	506:	Opera.ng	Systems	

Types	of	pages	
•  Unreclaimable	–	free	pages	(obviously),	pages	
pinned	in	memory	by	a	process,	temporarily	locked	
pages,	pages	used	for	certain	purposes	by	the	kernel	

•  Swappable	–	anonymous	pages,	tmpfs,	shared	IPC	
memory	

•  Syncable	–	cached	disk	data	
•  Discardable	–	unused	pages	in	cache	allocators	

24	

CSE	506:	Opera.ng	Systems	

General	principles	
•  Free	harmless	pages	first	
•  Steal	pages	from	user	programs,	especially	those	
that	haven’t	been	used	recently	

•  When	a	page	is	reclaimed,	remove	all	references	at	
once	
–  Removing	one	reference	is	a	waste	of	Lme	

•  Temporal	locality:	get	pages	that	haven’t	been	used	
in	a	while	

•  Laziness:	Favor	pages	that	are	“cheaper”	to	free	
–  Ex:	WaiLng	on	write	back	of	dirty	data	takes	Lme	
–  Note:	Dirty	pages	are	sLll	reclaimed,	just	not	preferred!	

25	

CSE	506:	Opera.ng	Systems	

Another	view	
•  Suppose	the	system	is	bogging	down	because	
memory	is	scarce	

•  The	problem	is	only	going	to	go	away	permanently	if	
a	process	can	get	enough	memory	to	finish	
–  Then	it	will	free	memory	permanently!	

•  When	the	OS	reclaims	memory,	we	want	to	avoid	
harming	progress	by	taking	away	memory	a	process	
really	needs	to	make	progress	

•  If	possible,	avoid	this	with	educated	guesses	

26	

CSE	506:	Opera.ng	Systems	

LRU	lists	
•  All	pages	are	on	one	of	2	LRU	lists:	acLve	or	inacLve	
•  IntuiLon:	a	page	access	causes	it	to	be	switched	to	
the	acLve	list	
–  A	page	that	hasn’t	been	accessed	in	a	while	moves	to	the	
inacLve	list	

27	

CSE	506:	Opera.ng	Systems	

How	to	detect	use?	
•  Tag	pages	with	“last	access”	Lme	
•  Obviously,	explicit	kernel	operaLons	(mmap,	
mprotect,	read,	etc.)	can		update	this	

•  What	about	when	a	page	is	mapped?	
–  Remember	those	hardware	access	bits	in	the	page	table?	
–  Periodically	clear	them;	if	they	don’t	get	re-set	by	the	
hardware,	you	can	assume	the	page	is	“cold”	
•  If	they	do	get	set,	it	is	“hot”	

28	

CSE	506:	Opera.ng	Systems	

Big	picture	
•  Kernel	keeps	a	heurisLc	“target”	of	free	pages	
– Makes	a	best	effort	to	maintain	that	target;	can	fail	

•  Kernel	gets	really	worried	when	allocaLons	start	
failing	
–  In	the	worst	case,	starts	out-of-memory	(OOM)	killing	
processes	unLl	memory	can	be	reclaimed	

29	

CSE	506:	Opera.ng	Systems	

Editorial	
•  Choosing	the	“right”	pages	to	free	is	a	problem	
without	a	lot	of	good	science	behind	it	
– Many	systems	don’t	cope	well	with	low-memory	
condiLons	

–  But	they	need	to	get	be]er		
•  (Think	phones	and	other	small	devices)	

•  Important	problem	–	perhaps	an	opportunity?	

30	

CSE	506:	Opera.ng	Systems	

Summary	
•  Reverse	mappings	for	shared:	
–  Anonymous	pages	
–  File-mapping	pages	

•  Basic	tricks	of	page	frame	reclaiming	
–  LRU	lists	
–  Free	cheapest	pages	first	
–  Unmap	all	at	once	
–  Etc.	

31	

