777N\ — — i —
QI stony Brook University CSE 506: Operating Systems

The Page Cache

Don Porter

QI stony Brook University CSE 506: Operating Systems

Logical Diagram

Binary Memory

System C="

Memory
Management Scheduler

/™ —
Hardware

Interrupts Consistency

777N\ — — i —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

Recap of previous lectures

* Page tables: translate virtual addresses to physical
addresses

VM Areas (Linux): track what should be mapped at in
the virtual address space of a process

* Hoard/Linux slab: Efficient allocation of objects from
a superblock/slab of pages

Q\\\‘ Stony Brook University CSE 506: Operating Systems
Background
e Lab2: Track physical pages with an array of Pagelnfo
structs

— Contains reference counts
— Free list layered over this array

e Just like JOS, Linux represents physical memory with
an array of page structs
— Obviously, not the exact same contents, but same idea

e Pages can be allocated to processes, or to cache file
data in memory

Q\\\‘ Stony Brook University CSE 506: Operating Systems

Today’s Problem

 Given a VMA or afile’s inode, how do | figure out
which physical pages are storing its data?

* Next lecture: We will go the other way, from a
physical page back to the VMA or file inode

777N\ — — i —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

The address space abstraction

* Unifying abstraction:
— Each file inode has an address space (0—file size)
— So do block devices that cache data in RAM (0---dev size)

— The (anonymous) virtual memory of a process has an
address space (0—4GB on x86)

* In other words, all page mappings can be thought of
as and (object, offset) tuple

— Make sense?

777N\ — — i —
‘\\\‘ Stony Brook University CSE 506: Operating Systems

Address Spaces for:

* VM Areas (VMAS)
* Files

o NN . e —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

Start Simple

 “Anonymous” memory — no file backing it
— E.g., the stack for a process

* Not shared between processes
— Will discuss sharing and swapping later

* How do we figure out virtual to physical mapping?
— Just walk the page tables!

* Linux doesn’t do anything outside of the page tables
to track this mapping

Q\\\‘ Stony Brook University CSE 506: Operating Systems

File mappings

* AVMA can also represent a memory mapped file

 The kernel can also map file pages to service
read () orwrite () system calls

* Goal: We only want to load a file into memory once!

QI stony Brook University CSE 506: Operating Systems

Logical View

Foo.txt
Process A

ot

Process B

Process C

Q\\\‘ Stony Brook University CSE 506: Operating Systems

VMA to a file

e Also easy: VMA includes a file pointer and an offset
into file

— A VMA may map only part of the file
— Offset must be at page granularity
— Anonymous mapping: file pointer is null
* File pointer is an open file descriptor in the process
file descriptor table
— We will discuss file handles later

QI stony Brook University CSE 506: Operating Systems

Logical View

Foo.txt
inode

FDs are
process-
specific

Process B

File
Descriptor
Table

Process C

1\\\‘ Stony Brook University CSE 506: Operating Systems

Tracking file pages

e What data structure to use for a file?
— No page tables for files

* For example: What page stores the first 4k of file
IlfOOH

e What data structure to use?

— Hint: Files can be small, or very, very large

o NN . e —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

The Radix Tree

* A space-optimized trie
— Trie: Rather than store entire key in each node, traversal

of parent(s) builds a prefix, node just stores suffix
* Especially useful for strings

— Prefix less important for file offsets, but does bound key
storage space

 More important: A tree with a branching factor k > 2
— Faster lookup for large files (esp. with tricks)

e Note: Linux’s use of the Radix tree is constrained

777N\ — — i —
‘\\\‘ Stony Brook University CSE 506: Operating Systems

III

From “Understanding the Linux Kerne

radix_tree_root

rnode

radix_tree_root
rnode

slots[2]

radix_tree_node
count=2

radix_tree_node radix_tree_node
count=2 count=1

63

slots[4] slots[4] slots[3]

index=0 index=4 index=0 index=4 index=131
(a) radix tree of height 1 (b) radix tree of height 2

Q\\\‘ Stony Brook University CSE 506: Operating Systems

A bit more detail

 Assume an upper bound on file size when building
the radix tree

— Can rebuild later if we are wrong

* Specifically: Max size is 256k, branching factor (k) =
64

* 256k / 4k pages = 64 pages

— So we need a radix tree of height 1 to represent these
pages

777N\ — — i —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

Tree of height 1

* Root has 64 slots, can be null, or a pointer to a page

* Lookup address X:
— Shift off low 12 bits (offset within page)
— Use next 6 bits as an index into these slots (26 = 64)
— If pointer non-null, go to the child node (page)
— If null, page doesn’t exist

o NN . e —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

Tree of height n

e Similar story:
— Shift off low 12 bits

* At each child shift off 6 bits from middle (starting at 6
* (distance to the bottom — 1) bits) to find which of
the 64 potential children to go to

— Use fixed height to figure out where to stop, which bits to
use for offset

 Observations:
— “Key” at each node implicit based on position in tree

— Lookup time constant in height of tree

* In a general-purpose radix tree, may have to check all k children,
for higher lookup cost

777N\ — — i —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

Fixed heights

* If the file size grows beyond max height, must grow
the tree

* Relatively simple: Add another root, previous tree
becomes first child
* Scaling in height:
— 1:27((6*1) +12) = 256 KB
— 2:27((6*2) +12) =16 MB
— 3:2M(6*3)+12)=1GB
— 4:217((6%4) + 12) = 64 GB
— 5:27M((6*5) +12) =4 TB

o NN . e —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

Back to address spaces

* Each address space for a file cached in memory
includes a radix tree

— Radix tree is sparse: pages not in memory are missing
* Radix tree also supports tags: such as dirty

— A tree node is tagged if at least one child also has the tag
 Example: | tag a file page dirty

— Must tag each parent in the radix tree as dirty

— When | am finished writing page back, | must check all
siblings; if none dirty, clear the parent’s dirty tag

QI stony Brook University CSE 506: Operating Systems

Logical View

Address Space

Foo.txt

. Process A
inode

\ Process B

Lo %

Process C

777N\ — — i —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

Recap

 Anonymous page: Just use the page tables
* File-backed mapping

— VMA -> open file descriptor-> inode

— Inode -> address space (radix tree)-> page

o NN . e —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

Problem 2: Dirty pages

 Most OSes do not write file updates to disk
immediately
— (Later lecture) OS tries to optimize disk arm movement

 OSinstead tracks “dirty” pages
— Ensures that write back isn’t delayed too long
e Lest data be lost in a crash
* Application can force immediate write back with
sync system calls (and some open/mmap options)

777N\ — — i —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

Sync system calls

e sync() — Flush all dirty buffers to disk

* fsync(fd) — Flush all dirty buffers associated with this
file to disk (including changes to the inode)

* fdatasync(fd) — Flush only dirty data pages for this
file to disk

— Don’t bother with the inode

777N\ — — i —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

How to implement sync?

* Goal: keep overheads of finding dirty blocks low
— A naive scan of all pages would work, but expensive
— Lots of clean pages

e |dea: keep track of dirty data to minimize overheads

— A bit of extra work on the write path, of course

777N\ — — i —
1\\\‘ Stony Brook University CSE 506: Operating Systems

How to implement sync?

* Background: Each file system has a super block
— All super blocks in a list

e Each super block keeps a list of dirty inodes

* |Inodes and superblocks both marked dirty upon use

NN _—— T T ——
QI stony Brook University CSE 506: Operating Systems

FS Organization

SB SB
‘ /d1

Dirty list

inode ’

A A
e

777N\ — — i —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

Simple traversal

for each s in superblock list:
if (s->dirty) writeback s
foriininode list:
if (i->dirty) writeback i
if (i->radix_root->dirty) :
// Recursively traverse tree writing
// dirty pages and clearing dirty flag

o NN . e —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

Asynchronous flushing
e Kernel thread(s): pdflush

— A kernel thread is a task that only runs in the kernel’s
address space

— 2-8 threads, depending on how busy/idle threads are

 When pdflush runs, it is given a target number of
pages to write back
— Kernel maintains a total number of dirty pages
— Administrator configures a target dirty ratio (say 10%)

777N\ — — i —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

pdflush

 When pdflush is scheduled, it figures out how many
dirty pages are above the target ratio

* Writes back pages until it meets its goal or can’t
write more back

— (Some pages may be locked, just skip those)

e Same traversal as sync() + a count of written pages

— Usually quits earlier

777N\ — — i —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

How long dirty?
* Linux has some inode-specific bookkeeping about
when things were dirtied

* pdflush also checks for any inodes that have been
dirty longer than 30 seconds

— Writes these back even if quota was met

* Not the strongest guarantee I've ever seen...

777N\ — — i —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

But where to write?

* Ok, sol see how to find the dirty pages

e How does the kernel know where on disk to write
them?

— And which disk for that matter?
e Superblock tracks device
* Inode tracks mapping from file offset to sector

777N\ — — i —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

Block size mismatch

* Most disks have 512 byte blocks; pages are generally
4K

— Some new “green” disks have 4K blocks
— Per page in cache — usually 8 disk blocks
e When blocks don’t match, what do we do?

— Simple answer: Just write all 8!

— But this is expensive — if only one block changed, we only
want to write one block back

Q\\\‘ Stony Brook University CSE 506: Operating Systems

Buffer head

 Simple idea: for every page backed by disk, store an
extra data structure for each disk block, called a
buffer _head

* If a page stores 8 disk blocks, it has 8 buffer heads

 Example: write() system call for first 5 bytes
— Look up first page in radix tree

— Modify page, mark dirty
— Only mark first buffer head dirty

‘\\\‘ Stony Brook University CSE 506: Operating Systems

III

From “Understanding the Linux Kerne

' < - — : —— b data
‘ Page descriptor ': g | i T TE » private
"1, R, > b this page
<' - 1 1 - -
' | : ——-—»b_page
Page ' v _

Buffer = Buffer head i
Buffer - Buffer head r
Buffer] Buffer head "
L - — "::.o’..:
Buffer Bufferhead |4

Figure 15-2. A buffer page including four buffers and their buffer heads

YR YE
|

Q\\\‘ Stony Brook University CSE 506: Operating Systems

More on buffer heads

* On write-back (sync, pdflush, etc), only write dirty
buffer heads

 To look up a given disk block for a file, must divide by
buffer heads per page

— Ex: disk block 25 of a file is in page 3 in the radix tree

* Note: memory mapped files mark all 8 buffer_heads
dirty. Why?

— Can only detect write regions via page faults

Q\\\‘ Stony Brook University CSE 506: Operating Systems
Summary
* Seen how mappings of files/disks to cache pages are
tracked

— And how dirty pages are tagged
— Radix tree basics

* When and how dirty data is written back to disk

 How difference between disk sector and page sizes
are handled

