
CSE	506:	Opera.ng	Systems	

The	Page	Cache	

Don	Porter	

1	



CSE	506:	Opera.ng	Systems	

Logical	Diagram	

Memory		
Management	

CPU	
Scheduler	

User	

Kernel	

Hardware	

Binary	
Formats	

Consistency	

System	Calls	

Interrupts	 Disk	 Net	

RCU	 File	System	

Device	
Drivers	

Networking	 Sync	

Memory	
Allocators	 Threads	

Today’s	Lecture	
(kernel	level	mem.	
management)	

2	



CSE	506:	Opera.ng	Systems	

Recap	of	previous	lectures	
•  Page	tables:	translate	virtual	addresses	to	physical	
addresses	

•  VM	Areas	(Linux):	track	what	should	be	mapped	at	in	
the	virtual	address	space	of	a	process	

•  Hoard/Linux	slab:	Efficient	allocaTon	of	objects	from	
a	superblock/slab	of	pages	

3	



CSE	506:	Opera.ng	Systems	

Background	
•  Lab2:	Track	physical	pages	with	an	array	of	PageInfo	
structs	
–  Contains	reference	counts	
–  Free	list	layered	over	this	array	

•  Just	like	JOS,	Linux	represents	physical	memory	with	
an	array	of	page	structs	
–  Obviously,	not	the	exact	same	contents,	but	same	idea	

•  Pages	can	be	allocated	to	processes,	or	to	cache	file	
data	in	memory	

4	



CSE	506:	Opera.ng	Systems	

Today’s	Problem	
•  Given	a	VMA	or	a	file’s	inode,	how	do	I	figure	out	
which	physical	pages	are	storing	its	data?		

•  Next	lecture:	We	will	go	the	other	way,	from	a	
physical	page	back	to	the	VMA	or	file	inode	

5	



CSE	506:	Opera.ng	Systems	

The	address	space	abstracTon	
•  Unifying	abstracTon:	
–  Each	file	inode	has	an	address	space	(0—file	size)	
–  So	do	block	devices	that	cache	data	in	RAM	(0---dev	size)	
–  The	(anonymous)	virtual	memory	of	a	process	has	an	
address	space	(0—4GB	on	x86)	

•  In	other	words,	all	page	mappings	can	be	thought	of	
as	and	(object,	offset)	tuple	
– Make	sense?	

6	



CSE	506:	Opera.ng	Systems	

Address	Spaces	for:	
•  VM	Areas	(VMAs)	
•  Files	

7	



CSE	506:	Opera.ng	Systems	

Start	Simple	
•  “Anonymous”	memory	–	no	file	backing	it	
–  E.g.,	the	stack	for	a	process	

•  Not	shared	between	processes	
– Will	discuss	sharing	and	swapping	later	

•  How	do	we	figure	out	virtual	to	physical	mapping?	
–  Just	walk	the	page	tables!	

•  Linux	doesn’t	do	anything	outside	of	the	page	tables	
to	track	this	mapping	

8	



CSE	506:	Opera.ng	Systems	

File	mappings	
•  A	VMA	can	also	represent	a	memory	mapped	file	
•  The	kernel	can	also	map	file	pages	to	service	
read()	or	write()	system	calls	

•  Goal:	We	only	want	to	load	a	file	into	memory	once!	

9	



CSE	506:	Opera.ng	Systems	

Logical	View	

Disk	
Hello!	

Foo.txt	
inode	

?	
Process	A	

?	

Process	B	

?	

Process	C	

?	

10	



CSE	506:	Opera.ng	Systems	

VMA	to	a	file	
•  Also	easy:	VMA	includes	a	file	pointer	and	an	offset	
into	file	
–  A	VMA	may	map	only	part	of	the	file	
–  Offset	must	be	at	page	granularity	
–  Anonymous	mapping:	file	pointer	is	null	

•  File	pointer	is	an	open	file	descriptor	in	the	process	
file	descriptor	table	
– We	will	discuss	file	handles	later	

11	



CSE	506:	Opera.ng	Systems	

Logical	View	

Disk	

Hello!	 Foo.txt	
inode	

?	
Process	A	

Process	B	

Process	C	

File	
Descriptor	
Table	

FDs	are	
process-
specific	

12	



CSE	506:	Opera.ng	Systems	

Tracking	file	pages	
•  What	data	structure	to	use	for	a	file?	
–  No	page	tables	for	files	

•  For	example:	What	page	stores	the	first	4k	of	file	
“foo”	

•  What	data	structure	to	use?	
–  Hint:	Files	can	be	small,	or	very,	very	large	

13	



CSE	506:	Opera.ng	Systems	

The	Radix	Tree	
•  A	space-opTmized	trie	
–  Trie:	Rather	than	store	enTre	key	in	each	node,	traversal	
of	parent(s)	builds	a	prefix,	node	just	stores	suffix	
•  Especially	useful	for	strings	

–  Prefix	less	important	for	file	offsets,	but	does	bound	key	
storage	space	

•  More	important:	A	tree	with	a	branching	factor	k	>	2	
–  Faster	lookup	for	large	files	(esp.	with	tricks)	

•  Note:	Linux’s	use	of	the	Radix	tree	is	constrained	

14	



CSE	506:	Opera.ng	Systems	

From	“Understanding	the	Linux	Kernel”	

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Page Cache | 605

not NULL, and tags is a two-component array of flags that will be discussed in the sec-
tion “The Tags of the Radix Tree” later in this chapter. The root of the tree is repre-
sented by a radix_tree_root data structure, having three fields: height denotes the
current tree’s height (number of levels excluding the leaves), gfp_mask specifies the
flags used when requesting memory for a new node, and rnode points to the radix_
tree_node data structure corresponding to the node at level 1 of the tree (if any).

Let us consider a simple example. If none of the indices stored in the tree is greater
than 63, the tree height is equal to one, because the 64 potential leaves can all be
stored in the node at level 1 (see Figure 15-1 (a)). If, however, a new page descriptor
corresponding to index 131 must be stored in the page cache, the tree height is
increased to two, so that the radix tree can pinpoint indices up to 4095 (see
Figure 15-1(b)).

Table 15-3 shows the highest page index and the corresponding maximum file size
for each given height of the radix tree on a 32-bit architecture. In this case, the maxi-
mum height of a radix tree is six, although it is quite unlikely that the page cache of
your system will make use of a radix tree that huge. Because the page index is stored
in a 32-bit variable, when the tree has height equal to six, the node at the highest
level can have at most four children.

Figure 15-1. Two examples of a radix tree

(a) radix tree of height 1 (b) radix tree of height 2

radix_tree_root

height = 1

radix_tree_node

rnode

count = 2

slots[0] slots[4]

index = 0

page

...

index = 4

0 63

radix_tree_root

height = 2

radix_tree_node

rnode

count = 2

...
0 63

radix_tree_node
count = 2

slots[0] slots[4]

index = 0

...

index = 4

0 63

slots[0]

radix_tree_node
count = 1

slots[3]

index = 131

...
0 63

slots[2]

page page page page

15	



CSE	506:	Opera.ng	Systems	

A	bit	more	detail	
•  Assume	an	upper	bound	on	file	size	when	building	
the	radix	tree	
–  Can	rebuild	later	if	we	are	wrong	

•  Specifically:	Max	size	is	256k,	branching	factor	(k)	=	
64	

•  256k	/	4k	pages	=	64	pages	
–  So	we	need	a	radix	tree	of	height	1	to	represent	these	
pages	

16	



CSE	506:	Opera.ng	Systems	

Tree	of	height	1	
•  Root	has	64	slots,	can	be	null,	or	a	pointer	to	a	page	
•  Lookup	address	X:	
–  Ship	off	low	12	bits	(offset	within	page)	
–  Use	next	6	bits	as	an	index	into	these	slots	(2^6	=	64)	
–  If	pointer	non-null,	go	to	the	child	node	(page)	
–  If	null,	page	doesn’t	exist	

17	



CSE	506:	Opera.ng	Systems	

Tree	of	height	n	
•  Similar	story:	
–  Ship	off	low	12	bits	

•  At	each	child	ship	off	6	bits	from	middle	(starTng	at	6	
*	(distance	to	the	bosom	–	1)	bits)	to	find	which	of	
the	64	potenTal	children	to	go	to	
–  Use	fixed	height	to	figure	out	where	to	stop,	which	bits	to	
use	for	offset	

•  ObservaTons:	
–  “Key”	at	each	node	implicit	based	on	posiTon	in	tree	
–  Lookup	Tme	constant	in	height	of	tree	

•  In	a	general-purpose	radix	tree,	may	have	to	check	all	k	children,	
for	higher	lookup	cost	

18	



CSE	506:	Opera.ng	Systems	

Fixed	heights	
•  If	the	file	size	grows	beyond	max	height,	must	grow	
the	tree	

•  RelaTvely	simple:	Add	another	root,	previous	tree	
becomes	first	child	

•  Scaling	in	height:	
–  1:	2^(	(6*1)	+12)	=	256	KB	
–  2:	2^(	(6*2)	+	12)	=	16	MB	
–  3:	2^(	(6*3)	+	12)	=	1	GB	
–  4:	2^(	(6*4)	+	12)	=	64	GB	
–  5:	2^(	(6*5)	+	12)	=	4	TB	

19	



CSE	506:	Opera.ng	Systems	

Back	to	address	spaces	
•  Each	address	space	for	a	file	cached	in	memory	
includes	a	radix	tree	
–  Radix	tree	is	sparse:	pages	not	in	memory	are	missing	

•  Radix	tree	also	supports	tags:	such	as	dirty	
–  A	tree	node	is	tagged	if	at	least	one	child	also	has	the	tag	

•  Example:	I	tag	a	file	page	dirty	
– Must	tag	each	parent	in	the	radix	tree	as	dirty	
– When	I	am	finished	wriTng	page	back,	I	must	check	all	
siblings;	if	none	dirty,	clear	the	parent’s	dirty	tag	

20	



CSE	506:	Opera.ng	Systems	

Logical	View	

Disk	

Hello!	

Foo.txt	
inode	 Process	A	

Process	B	

Process	C	

Address	Space	

Radix	
Tree	

21	



CSE	506:	Opera.ng	Systems	

Recap	
•  Anonymous	page:	Just	use	the	page	tables	
•  File-backed	mapping	
–  VMA	->	open	file	descriptor->	inode	
–  Inode	->	address	space	(radix	tree)->	page	

22	



CSE	506:	Opera.ng	Systems	

Problem	2:	Dirty	pages	
•  Most	OSes	do	not	write	file	updates	to	disk	
immediately	
–  (Later	lecture)	OS	tries	to	opTmize	disk	arm	movement	

•  OS	instead	tracks	“dirty”	pages	
–  Ensures	that	write	back	isn’t	delayed	too	long	

•  Lest	data	be	lost	in	a	crash	

•  ApplicaTon	can	force	immediate	write	back	with	
sync	system	calls	(and	some	open/mmap	opTons)	

23	



CSE	506:	Opera.ng	Systems	

Sync	system	calls	
•  sync()	–	Flush	all	dirty	buffers	to	disk	
•  fsync(fd)	–	Flush	all	dirty	buffers	associated	with	this	
file	to	disk	(including	changes	to	the	inode)	

•  fdatasync(fd)	–	Flush	only	dirty	data	pages	for	this	
file	to	disk	
–  Don’t	bother	with	the	inode	

24	



CSE	506:	Opera.ng	Systems	

How	to	implement	sync?	
•  Goal:	keep	overheads	of	finding	dirty	blocks	low	
–  A	naïve	scan	of	all	pages	would	work,	but	expensive	
–  Lots	of	clean	pages	

•  Idea:	keep	track	of	dirty	data	to	minimize	overheads	
–  A	bit	of	extra	work	on	the	write	path,	of	course	

25	



CSE	506:	Opera.ng	Systems	

How	to	implement	sync?	
•  Background:	Each	file	system	has	a	super	block	
–  All	super	blocks	in	a	list	

•  Each	super	block	keeps	a	list	of	dirty	inodes	
•  Inodes	and	superblocks	both	marked	dirty	upon	use	

26	



CSE	506:	Opera.ng	Systems	

FS	OrganizaTon	

SB	
/	

SB	
/floppy	

SB	
/d1	

One	
Superblock	
per	FS	

inode	

Dirty	list	

Dirty	list	of	
inodes	

Inodes	and	radix	
nodes/pages	
marked	dirty	
separately	

27	



CSE	506:	Opera.ng	Systems	

Simple	traversal	
for	each	s	in	superblock	list:	

	if	(s->dirty)	writeback	s	
	for	i	in	inode	list:	
	 	if	(i->dirty)	writeback	i	
	 	if	(i->radix_root->dirty)	:	
	 	 	//	Recursively	traverse	tree	wriTng		
	 	 	//	dirty	pages	and	clearing	dirty	flag		

28	



CSE	506:	Opera.ng	Systems	

Asynchronous	flushing	
•  Kernel	thread(s):	pdflush	
–  A	kernel	thread	is	a	task	that	only	runs	in	the	kernel’s	
address	space	

–  2-8	threads,	depending	on	how	busy/idle	threads	are	
•  When	pdflush	runs,	it	is	given	a	target	number	of	
pages	to	write	back	
–  Kernel	maintains	a	total	number	of	dirty	pages	
–  Administrator	configures	a	target	dirty	raTo	(say	10%)	

29	



CSE	506:	Opera.ng	Systems	

pdflush	
•  When	pdflush	is	scheduled,	it	figures	out	how	many	
dirty	pages	are	above	the	target	raTo	

•  Writes	back	pages	unTl	it	meets	its	goal	or	can’t	
write	more	back	
–  (Some	pages	may	be	locked,	just	skip	those)	

•  Same	traversal	as	sync()	+	a	count	of	wrisen	pages	
–  Usually	quits	earlier	

30	



CSE	506:	Opera.ng	Systems	

How	long	dirty?	
•  Linux	has	some	inode-specific	bookkeeping	about	
when	things	were	dirTed	

•  pdflush	also	checks	for	any	inodes	that	have	been	
dirty	longer	than	30	seconds	
– Writes	these	back	even	if	quota	was	met	

•  Not	the	strongest	guarantee	I’ve	ever	seen…	

31	



CSE	506:	Opera.ng	Systems	

But	where	to	write?	
•  Ok,	so	I	see	how	to	find	the	dirty	pages	
•  How	does	the	kernel	know	where	on	disk	to	write	
them?	
–  And	which	disk	for	that	maser?	

•  Superblock	tracks	device	
•  Inode	tracks	mapping	from	file	offset	to	sector	

32	



CSE	506:	Opera.ng	Systems	

Block	size	mismatch	
•  Most	disks	have	512	byte	blocks;	pages	are	generally	
4K	
–  Some	new	“green”	disks	have	4K	blocks	
–  Per	page	in	cache	–	usually	8	disk	blocks	

•  When	blocks	don’t	match,	what	do	we	do?	
–  Simple	answer:	Just	write	all	8!	
–  But	this	is	expensive	–	if	only	one	block	changed,	we	only	
want	to	write	one	block	back	

33	



CSE	506:	Opera.ng	Systems	

Buffer	head	
•  Simple	idea:	for	every	page	backed	by	disk,	store	an	
extra	data	structure	for	each	disk	block,	called	a	
buffer_head	

•  If	a	page	stores	8	disk	blocks,	it	has	8	buffer	heads	
•  Example:	write()	system	call	for	first	5	bytes	
–  Look	up	first	page	in	radix	tree	
– Modify	page,	mark	dirty	
–  Only	mark	first	buffer	head	dirty	

34	



CSE	506:	Opera.ng	Systems	

From	“Understanding	the	Linux	Kernel”	

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Storing Blocks in the Page Cache | 615

buffer page points to the buffer head of the first block in the page;* every buffer head
stores in the b_this_page field a pointer to the next buffer head in the list. Moreover,
every buffer head stores the address of the buffer page’s descriptor in the b_page field.
Figure 15-2 shows a buffer page containing four block buffers and the correspond-
ing buffer heads.

Allocating Block Device Buffer Pages
The kernel allocates a new block device buffer page when it discovers that the page
cache does not include a page containing the buffer for a given block (see the section
“Searching Blocks in the Page Cache” later in this chapter). In particular, the lookup
operation for the block might fail for the following reasons:

1. The radix tree of the block device does not include a page containing the data of
the block: in this case a new page descriptor must be added to the radix tree.

2. The radix tree of the block device includes a page containing the data of the block,
but this page is not a buffer page: in this case new buffer heads must be allocated
and linked to the page, thus transforming it into a block device buffer page.

3. The radix tree of the block device includes a buffer page containing the data of
the block, but the page has been split in blocks of size different from the size of
the requested block: in this case the old buffer heads must be released, and a
new set of buffer heads must be allocated and linked to the page.

* Because the private field contains valid data, the PG_private flag of the page is also set; hence, if the page
contains disk data and the PG_private flag is set, then the page is a buffer page. Notice, however, that other
kernel components not related to the block I/O subsystem use the private and PG_private fields for other
purposes.

Figure 15-2. A buffer page including four buffers and their buffer heads

Page descriptor

b_data
private
b_this_page

Buffer

Buffer

Buffer

Buffer

Page

Buffer head

Buffer head

Buffer head

Buffer head

b_page

35	



CSE	506:	Opera.ng	Systems	

More	on	buffer	heads	
•  On	write-back	(sync,	pdflush,	etc),	only	write	dirty	
buffer	heads	

•  To	look	up	a	given	disk	block	for	a	file,	must	divide	by	
buffer	heads	per	page	
–  Ex:	disk	block	25	of	a	file	is	in	page	3	in	the	radix	tree	

•  Note:	memory	mapped	files	mark	all	8	buffer_heads	
dirty.		Why?	
–  Can	only	detect	write	regions	via	page	faults	

36	



CSE	506:	Opera.ng	Systems	

Summary	
•  Seen	how	mappings	of	files/disks	to	cache	pages	are	
tracked	
–  And	how	dirty	pages	are	tagged	
–  Radix	tree	basics	

•  When	and	how	dirty	data	is	wrisen	back	to	disk	
•  How	difference	between	disk	sector	and	page	sizes	
are	handled	

37	


