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Today’s	reading	
•  Design	challenges	and	trade-offs	in	a	threading	
library	

•  Nice	pracLcal	tricks	and	system	details	
•  And	some	historical	perspecLve	on	Linux	evoluLon	
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Threading	review	
•  What	is	threading?	
– MulLple	threads	of	execuLon	in	one	address	space	
–  x86	hardware:		

•  One	cr3	register	and	set	of	page	tables	shared	by	2+	different	
register	contexts	otherwise	(rip,	rsp/stack,	etc.)	

–  Linux:	
•  One	mm_struct	shared	by	several	task_structs	

–  Does	JOS	support	threading?	
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Ok,	but	what	is	a	thread	library?	
•  Threading	APIs	provided	by	libpthread.so	

•  System	calls	tend	to	be	subtle,	hard	to	program	
–  Design	reflects	performance	concerns	

libpthread.so	 Linux	System	Call	

pthread_create()	 clone(CLONE_FS|CLONE_IO|
CLONE_THREAD|…)	

pthread_mutex_lock(),	
pthread_cond_wait(),…	

futex()	

Thread-local	storage	 arch_prctl()	

The	division	of	labor	is	part	of	the	design!	 5	
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Kernel-managed	threads	(1:1	model)	
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Threads	scheduled	by	kernel	–	Just	tasks+shared	mm	6	
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Simple	User	Threading	(m:1	model)	
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User	Threading	ObservaLons	
•  One	can	easily	switch	stacks	in	user-space	
–  No	privileged	instrucLons	needed	
–  Same	for	saving	and	restoring	PC	(rip)	

•  Convert	blocking	to	non-blocking	calls	
–  OS	must	provide	non-blocking	equivalents	
–  Transparent	help	from	libc		

•  Catch	futexes,	yield	
•  Add	O_ASYNC	to	open,	detect	when	data	ready	

•  Need	a	second,	user-level	thread	scheduler	
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GeneralizaLon	–	m:n	model	
•  MulLple	applicaLon-level	threads	(m)		
•  MulLplexed	on	n	kernel-visible	threads	(m	>=	n)	
–  N	ooen	number	of	CPUs	
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User	Threading	Complexity	
•  Lots	of	libc/libpthread	changes	
– Working	around	“unfriendly”	kernel	API	

•  Bookkeeping	gets	much	more	complicated		
–  Second	scheduler	
–  SynchronizaLon	different	

•  Can	do	crude	preempLon	using:	
–  Certain	funcLons	(locks)	
–  Timer	signals	from	OS	
–  Signals	
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Why	bother	with	user	threading?	
•  Context	switching	overheads	
•  Finer-grained	scheduling	control	
•  Blocking	I/O	
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Context	Switching	Overheads	
•  Recall:	Forking	a	thread	halves	your	Lme	slice	
–  Takes	a	few	hundred	cycles	to	get	in/out	of	kernel	

•  Plus	cost	of	switching	a	thread	
–  Time	in	the	scheduler	counts	against	your	Lmeslice	

•  2	threads,	1	CPU	
–  If	I	can	run	the	context	switching	code	locally	(avoiding	
trap	overheads,	etc),	my	threads	get	to	run	slightly	longer!	

–  Stack	switching	code	works	in	userspace	with	few	changes	
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Finer-Grained	Scheduling	Control	
•  Example:	Thread	1	has	a	lock,	Thread	2	waiLng	for	
lock	
–  Thread	1’s	quantum	expired	
–  Thread	2	just	spinning	unLl	its	quantum	expires	
– Wouldn’t	it	be	nice	to	donate	Thread	2’s	quantum	to	
Thread	1?	
•  Both	threads	will	make	faster	progress!	

•  Similar	problems	with	producer/consumer,	barriers,	
etc.	

•  Deeper	problem:	ApplicaLon’s	data	flow	and	
synchronizaLon	paterns	hard	for	kernel	to	infer	
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Blocking	I/O	
•  I	have	2	threads,	they	each	get	half	of	the	
applicaLon’s	quantum	
–  If	A	blocks	on	I/O	and	B	is	using	the	CPU	
–  B	gets	half	the	CPU	Lme	
–  A’s	quantum	is	“lost”	(at	least	in	some	schedulers)	

•  Modern	Linux	scheduler:	
–  A	gets	a	priority	boost	
– Maybe	applicaLon	cares	more	about	B’s	CPU	Lme…	
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Blocking	I/O	and	Events	
•  Events:	abstracLon	for	dealing	with	blocking	I/O	
•  Layered	over	a	user-level	scheduler	
•  Lots	of	literature	on	this	topic	if	you	are	interested…	
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Scheduler	AcLvaLons	
•  Beter	API	for	user-level	threading	
–  Not	available	on	Linux	
–  Some	BSDs	support(ed)	scheduler	acLvaLons	

•  On	any	blocking	operaLon,	kernel	upcalls	back	to	
user	scheduler	

•  Eliminates	most	libc	changes	
–  Easier	noLficaLon	of	blocking	events	

•  User	scheduler	keeps	kernel	noLfied	of	how	many	
runnable	tasks	it	has	(via	system	call)	
–  Kernel	allocates	up	to	that	many	scheduler	acLvaLons	
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What	is	a	scheduler	acLvaLon?	
•  Like	a	kernel	thread:		
–  A	kernel	stack	and	a	user-mode	stack	
–  Represents	the	allocaLon	of	a	CPU	Lme	slice	

•  Not	like	a	kernel	thread:	
–  Does	not	automaLcally	resume	a	user	thread	
–  Goes	to	one	of	a	few	well-defined	“upcalls”	

•  New	Lmeslice,	Timeslice	expired,	Blocked	SA,	Unblocked	SA	
•  Upcalls	must	be	reentrant	(called	on	many	CPUs	at	same	Lme)	

–  User	scheduler	decides	what	to	run	
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Downsides	of	scheduler	acLvaLons	
•  A	random	user	thread	gets	preempted	on	every	
scheduling-related	event	
–  Not	free!	
–  User	scheduling	must	do	beter	than	kernel	by	a	big	
enough	margin	to	offset	these	overheads	

•  Moreover,	the	most	important	thread	may	be	the	
one	to	get	preempted,	slowing	down	criLcal	path	
–  PotenLal	opLmizaLon:	communicate	to	kernel	a	
preference	for	which	acLvaLon	gets	preempted	to	noLfy	
of	an	event	

OpLonal	Reading	on	Scheduler	AcLvaLons	 18	



CSE	506:	Opera.ng	Systems	

Back	to	NPTL	
•  UlLmately,	a	1:1	model	was	adopted	by	Linux.		
•  Why?	
–  Higher	context	switching	overhead	(lots	of	register	copying	
and	upcalls)	

–  Difference	of	opinion	between	research	and	kernel	
communiLes	about	how	inefficient	kernel-level	schedulers	
are.		(claims	about	O(1)	scheduling)	

– Way	more	complicated	to	maintain	the	code	for	m:n	
model.		Much	to	be	said	for	encapsulaLng	kernel	from	
thread	library!	
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Meta-observaLon	
•  Much	of	90s	OS	research	focused	on	giving	
programmers	more	control	over	performance	
–  E.g.,	microkernels,	extensible	OSes,	etc.	

•  Argument:	clumsy	heurisLcs	or	awkward	
abstracLons	are	keeping	me	from	gewng	full	
performance	of	my	hardware	

•  Some	won	the	day,	some	didn’t	
–  High-performance	databases	generally	get	direct	control	
over	disk(s)	rather	than	go	through	the	file	system	
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User-threading	in	pracLce	
•  Has	come	in	and	out	of	vogue	
–  Correlated	with	how	efficiently	the	OS	creates	and	context	
switches	threads	

•  Linux	2.4	–	Threading	was	really	slow	
–  User-level	thread	packages	were	hot	

•  Linux	2.6	–	SubstanLal	effort	went	into	tuning	
threads	
–  E.g.,	Most	JVMs	abandoned	user-threads	
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Other	issues	to	cover	
•  Signaling	
–  Correctness	
–  Performance	(SynchronizaLon)	

•  Manager	thread	
•  List	of	all	threads	
•  Other	miscellaneous	opLmizaLons	
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What	was	all	the	fuss	about	signals?	
•  2	issues:	

1) The	behavior	of	sending	a	signal	to	a	mulL-threaded	
process	was	not	correct.		And	could	never	be	implemented	
correctly	with	kernel-level	tools	(pre	2.6)	
•  Correctness:	Cannot	implement	POSIX	standard	

2) Signals	were	also	used	to	implement	blocking	
synchronizaLon.		E.g.,	releasing	a	mutex	meant	sending	a	
signal	to	the	next	blocked	task	to	wake	it	up.			
•  Performance:	Ridiculously	complicated	and	inefficient	
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Issue	1:	Signal	correctness	w/	threads	
•  Mostly	solved	by	kernel	assigning	same	PID	to	each	
thread	
–  2.4	assigned	different	PID	to	each	thread	
–  Different	TID	to	disLnguish	them	

•  Problem	with	different	PID?	
–  POSIX	says	I	should	be	able	to	send	a	signal	to	a	mulL-
threaded	program	and	any	unmasked	thread	will	get	the	
signal,	even	if	the	first	thread	has	exited	

•  To	deliver	a	signal	kernel	has	to	search	each	task	in	
the	process	for	an	unmasked	thread	
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Issue	2:	Performance	
•  Solved	by	adopLon	of	futexes	
•  EssenLally	just	a	shared	wait	queue	in	the	kernel	
•  Idea:		
–  Use	an	atomic	instrucLon	in	user	space	to	implement	fast	
path	for	a	lock	(more	in	later	lectures)	

–  If	task	needs	to	block,	ask	the	kernel	to	put	you	on	a	given	
futex	wait	queue	

–  Task	that	releases	the	lock	wakes	up	next	task	on	the	futex	
wait	queue	

•  See	opLonal	reading	on	futexes	for	more	details	
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Manager	Thread	
•  A	lot	of	coordinaLon	(using	signals)	had	to	go	
through	a	manager	thread	
–  E.g.,	cleaning	up	stacks	of	dead	threads	
–  Scalability	botleneck	

•  Mostly	eliminated	with	tweaks	to	kernel	that	
facilitate	decentralizaLon:	
–  The	kernel	handled	several	terminaLon	edge	cases	for	
threads	

–  Kernel	would	write	to	a	given	memory	locaLon	to	allow	
lazy	cleanup	of	per-thread	data	
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List	of	all	threads	
•  A	pain	to	maintain	
•  Mostly	eliminated,	but	sLll	needed	to	eliminate	
some	leaks	in	fork	

•  GeneraLon	counter	is	a	useful	trick	for	lazy	deleLon	
–  Used	in	many	systems	
–  Idea:	Transparently	replace	key	“Foo”	with	“Foo:0”.		Upon	
deleLon,	require	next	creaLon	to	rename	“Foo”	to	“Foo:
1”.		Eliminates	accidental	use	of	stale	data.	

27	



CSE	506:	Opera.ng	Systems	

Other	misc.	opLmizaLons	
•  On	super-computers,	were	hiwng	the	8k	limit	on	
segment	descriptors	

•  Where	does	the	8k	limit	come	from?	
–  Bits	in	the	segment	descriptor.		Hardware-level	limit	

•  How	solved?	
–  EssenLally,	kernel	scheduler	swaps	them	out	if	needed	
–  Is	this	the	common	case?	
–  No,	expect	8k	to	be	enough	

28	



CSE	506:	Opera.ng	Systems	

OpLmizaLons	
•  OpLmized	exit	performance	for	100k	threads	from	
15	minutes	to	2	seconds!	

•  PID	space	increased	to	2	billion	threads	
–  /proc	file	system	able	to	handle	more	than	64k	processes	
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Results	
•  Big	speedups!		Yay!	
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Summary	
•  Nice	paper	on	the	pracLcal	concerns	and	trade-offs	
in	building	a	threading	library	
–  I	enjoyed	this	reading	very	much	

•  Understand	1:1	vs.	m:n	model	
–  User	vs.	kernel-level	threading	

•  Understand	other	key	implementaLon	issues	
discussed	in	the	paper	
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