
CSE	506:	Opera.ng	Systems	

Na.ve	POSIX	Threading	
Library	(NPTL)	

	

Don	Porter	

1	

CSE	506:	Opera.ng	Systems	

Logical	Diagram	

Memory		
Management	

CPU	
Scheduler	

User	

Kernel	

Hardware	

Binary	
Formats	

Consistency	

System	Calls	

Interrupts	 Disk	 Net	

RCU	 File	System	

Device	
Drivers	

Networking	 Sync	

Memory	
Allocators	 Threads	

Today’s	Lecture	
Scheduling	threads	

2	

CSE	506:	Opera.ng	Systems	

Today’s	reading	
•  Design	challenges	and	trade-offs	in	a	threading	
library	

•  Nice	pracLcal	tricks	and	system	details	
•  And	some	historical	perspecLve	on	Linux	evoluLon	

3	

CSE	506:	Opera.ng	Systems	

Threading	review	
•  What	is	threading?	
– MulLple	threads	of	execuLon	in	one	address	space	
–  x86	hardware:		

•  One	cr3	register	and	set	of	page	tables	shared	by	2+	different	
register	contexts	otherwise	(rip,	rsp/stack,	etc.)	

–  Linux:	
•  One	mm_struct	shared	by	several	task_structs	

–  Does	JOS	support	threading?	

4	

CSE	506:	Opera.ng	Systems	

Ok,	but	what	is	a	thread	library?	
•  Threading	APIs	provided	by	libpthread.so	

•  System	calls	tend	to	be	subtle,	hard	to	program	
–  Design	reflects	performance	concerns	

libpthread.so	 Linux	System	Call	

pthread_create()	 clone(CLONE_FS|CLONE_IO|
CLONE_THREAD|…)	

pthread_mutex_lock(),	
pthread_cond_wait(),…	

futex()	

Thread-local	storage	 arch_prctl()	

The	division	of	labor	is	part	of	the	design!	 5	

CSE	506:	Opera.ng	Systems	

Kernel-managed	threads	(1:1	model)	
pid:	
100	…	 …	pid:	

101	 Kernel	
User	mm	

Stack	
0	

Stack	
1	

.text	

Shared	Page	Tables/Virtual	Address	Space	

rsp	100	 rsp	101	

rip	101	

rip	100	

Threads	scheduled	by	kernel	–	Just	tasks+shared	mm	6	

CSE	506:	Opera.ng	Systems	

Simple	User	Threading	(m:1	model)	
pid:	
100	…	 …	

Kernel	

t0	

User	mm	

Stack	
0	

Stack	
1	

sched:	
	
	

Thr1:	
	
	

Thr0:	

Shared	Page	Tables/Virtual	Address	Space	

rsp	

rip	

User-level	scheduler,	one	kernel	thread	

t1	

regs	

Convert	to	
Async	Read	

read()	
Call	User	
Scheduler	
on	return	

regs	

Save	t0	regs,	
Restore	t1	

7	

CSE	506:	Opera.ng	Systems	

User	Threading	ObservaLons	
•  One	can	easily	switch	stacks	in	user-space	
–  No	privileged	instrucLons	needed	
–  Same	for	saving	and	restoring	PC	(rip)	

•  Convert	blocking	to	non-blocking	calls	
–  OS	must	provide	non-blocking	equivalents	
–  Transparent	help	from	libc		

•  Catch	futexes,	yield	
•  Add	O_ASYNC	to	open,	detect	when	data	ready	

•  Need	a	second,	user-level	thread	scheduler	

8	

CSE	506:	Opera.ng	Systems	

GeneralizaLon	–	m:n	model	
•  MulLple	applicaLon-level	threads	(m)		
•  MulLplexed	on	n	kernel-visible	threads	(m	>=	n)	
–  N	ooen	number	of	CPUs	

9	

CSE	506:	Opera.ng	Systems	

User	Threading	Complexity	
•  Lots	of	libc/libpthread	changes	
– Working	around	“unfriendly”	kernel	API	

•  Bookkeeping	gets	much	more	complicated		
–  Second	scheduler	
–  SynchronizaLon	different	

•  Can	do	crude	preempLon	using:	
–  Certain	funcLons	(locks)	
–  Timer	signals	from	OS	
–  Signals	

10	

CSE	506:	Opera.ng	Systems	

Why	bother	with	user	threading?	
•  Context	switching	overheads	
•  Finer-grained	scheduling	control	
•  Blocking	I/O	

11	

CSE	506:	Opera.ng	Systems	

Context	Switching	Overheads	
•  Recall:	Forking	a	thread	halves	your	Lme	slice	
–  Takes	a	few	hundred	cycles	to	get	in/out	of	kernel	

•  Plus	cost	of	switching	a	thread	
–  Time	in	the	scheduler	counts	against	your	Lmeslice	

•  2	threads,	1	CPU	
–  If	I	can	run	the	context	switching	code	locally	(avoiding	
trap	overheads,	etc),	my	threads	get	to	run	slightly	longer!	

–  Stack	switching	code	works	in	userspace	with	few	changes	

12	

CSE	506:	Opera.ng	Systems	

Finer-Grained	Scheduling	Control	
•  Example:	Thread	1	has	a	lock,	Thread	2	waiLng	for	
lock	
–  Thread	1’s	quantum	expired	
–  Thread	2	just	spinning	unLl	its	quantum	expires	
– Wouldn’t	it	be	nice	to	donate	Thread	2’s	quantum	to	
Thread	1?	
•  Both	threads	will	make	faster	progress!	

•  Similar	problems	with	producer/consumer,	barriers,	
etc.	

•  Deeper	problem:	ApplicaLon’s	data	flow	and	
synchronizaLon	paterns	hard	for	kernel	to	infer	

13	

CSE	506:	Opera.ng	Systems	

Blocking	I/O	
•  I	have	2	threads,	they	each	get	half	of	the	
applicaLon’s	quantum	
–  If	A	blocks	on	I/O	and	B	is	using	the	CPU	
–  B	gets	half	the	CPU	Lme	
–  A’s	quantum	is	“lost”	(at	least	in	some	schedulers)	

•  Modern	Linux	scheduler:	
–  A	gets	a	priority	boost	
– Maybe	applicaLon	cares	more	about	B’s	CPU	Lme…	

14	

CSE	506:	Opera.ng	Systems	

Blocking	I/O	and	Events	
•  Events:	abstracLon	for	dealing	with	blocking	I/O	
•  Layered	over	a	user-level	scheduler	
•  Lots	of	literature	on	this	topic	if	you	are	interested…	

15	

CSE	506:	Opera.ng	Systems	

Scheduler	AcLvaLons	
•  Beter	API	for	user-level	threading	
–  Not	available	on	Linux	
–  Some	BSDs	support(ed)	scheduler	acLvaLons	

•  On	any	blocking	operaLon,	kernel	upcalls	back	to	
user	scheduler	

•  Eliminates	most	libc	changes	
–  Easier	noLficaLon	of	blocking	events	

•  User	scheduler	keeps	kernel	noLfied	of	how	many	
runnable	tasks	it	has	(via	system	call)	
–  Kernel	allocates	up	to	that	many	scheduler	acLvaLons	

16	

CSE	506:	Opera.ng	Systems	

What	is	a	scheduler	acLvaLon?	
•  Like	a	kernel	thread:		
–  A	kernel	stack	and	a	user-mode	stack	
–  Represents	the	allocaLon	of	a	CPU	Lme	slice	

•  Not	like	a	kernel	thread:	
–  Does	not	automaLcally	resume	a	user	thread	
–  Goes	to	one	of	a	few	well-defined	“upcalls”	

•  New	Lmeslice,	Timeslice	expired,	Blocked	SA,	Unblocked	SA	
•  Upcalls	must	be	reentrant	(called	on	many	CPUs	at	same	Lme)	

–  User	scheduler	decides	what	to	run	

17	

CSE	506:	Opera.ng	Systems	

Downsides	of	scheduler	acLvaLons	
•  A	random	user	thread	gets	preempted	on	every	
scheduling-related	event	
–  Not	free!	
–  User	scheduling	must	do	beter	than	kernel	by	a	big	
enough	margin	to	offset	these	overheads	

•  Moreover,	the	most	important	thread	may	be	the	
one	to	get	preempted,	slowing	down	criLcal	path	
–  PotenLal	opLmizaLon:	communicate	to	kernel	a	
preference	for	which	acLvaLon	gets	preempted	to	noLfy	
of	an	event	

OpLonal	Reading	on	Scheduler	AcLvaLons	 18	

CSE	506:	Opera.ng	Systems	

Back	to	NPTL	
•  UlLmately,	a	1:1	model	was	adopted	by	Linux.		
•  Why?	
–  Higher	context	switching	overhead	(lots	of	register	copying	
and	upcalls)	

–  Difference	of	opinion	between	research	and	kernel	
communiLes	about	how	inefficient	kernel-level	schedulers	
are.		(claims	about	O(1)	scheduling)	

– Way	more	complicated	to	maintain	the	code	for	m:n	
model.		Much	to	be	said	for	encapsulaLng	kernel	from	
thread	library!	

19	

CSE	506:	Opera.ng	Systems	

Meta-observaLon	
•  Much	of	90s	OS	research	focused	on	giving	
programmers	more	control	over	performance	
–  E.g.,	microkernels,	extensible	OSes,	etc.	

•  Argument:	clumsy	heurisLcs	or	awkward	
abstracLons	are	keeping	me	from	gewng	full	
performance	of	my	hardware	

•  Some	won	the	day,	some	didn’t	
–  High-performance	databases	generally	get	direct	control	
over	disk(s)	rather	than	go	through	the	file	system	

20	

CSE	506:	Opera.ng	Systems	

User-threading	in	pracLce	
•  Has	come	in	and	out	of	vogue	
–  Correlated	with	how	efficiently	the	OS	creates	and	context	
switches	threads	

•  Linux	2.4	–	Threading	was	really	slow	
–  User-level	thread	packages	were	hot	

•  Linux	2.6	–	SubstanLal	effort	went	into	tuning	
threads	
–  E.g.,	Most	JVMs	abandoned	user-threads	

21	

CSE	506:	Opera.ng	Systems	

Other	issues	to	cover	
•  Signaling	
–  Correctness	
–  Performance	(SynchronizaLon)	

•  Manager	thread	
•  List	of	all	threads	
•  Other	miscellaneous	opLmizaLons	

22	

CSE	506:	Opera.ng	Systems	

What	was	all	the	fuss	about	signals?	
•  2	issues:	

1) The	behavior	of	sending	a	signal	to	a	mulL-threaded	
process	was	not	correct.		And	could	never	be	implemented	
correctly	with	kernel-level	tools	(pre	2.6)	
•  Correctness:	Cannot	implement	POSIX	standard	

2) Signals	were	also	used	to	implement	blocking	
synchronizaLon.		E.g.,	releasing	a	mutex	meant	sending	a	
signal	to	the	next	blocked	task	to	wake	it	up.			
•  Performance:	Ridiculously	complicated	and	inefficient	

23	

CSE	506:	Opera.ng	Systems	

Issue	1:	Signal	correctness	w/	threads	
•  Mostly	solved	by	kernel	assigning	same	PID	to	each	
thread	
–  2.4	assigned	different	PID	to	each	thread	
–  Different	TID	to	disLnguish	them	

•  Problem	with	different	PID?	
–  POSIX	says	I	should	be	able	to	send	a	signal	to	a	mulL-
threaded	program	and	any	unmasked	thread	will	get	the	
signal,	even	if	the	first	thread	has	exited	

•  To	deliver	a	signal	kernel	has	to	search	each	task	in	
the	process	for	an	unmasked	thread	

24	

CSE	506:	Opera.ng	Systems	

Issue	2:	Performance	
•  Solved	by	adopLon	of	futexes	
•  EssenLally	just	a	shared	wait	queue	in	the	kernel	
•  Idea:		
–  Use	an	atomic	instrucLon	in	user	space	to	implement	fast	
path	for	a	lock	(more	in	later	lectures)	

–  If	task	needs	to	block,	ask	the	kernel	to	put	you	on	a	given	
futex	wait	queue	

–  Task	that	releases	the	lock	wakes	up	next	task	on	the	futex	
wait	queue	

•  See	opLonal	reading	on	futexes	for	more	details	

25	

CSE	506:	Opera.ng	Systems	

Manager	Thread	
•  A	lot	of	coordinaLon	(using	signals)	had	to	go	
through	a	manager	thread	
–  E.g.,	cleaning	up	stacks	of	dead	threads	
–  Scalability	botleneck	

•  Mostly	eliminated	with	tweaks	to	kernel	that	
facilitate	decentralizaLon:	
–  The	kernel	handled	several	terminaLon	edge	cases	for	
threads	

–  Kernel	would	write	to	a	given	memory	locaLon	to	allow	
lazy	cleanup	of	per-thread	data	

26	

CSE	506:	Opera.ng	Systems	

List	of	all	threads	
•  A	pain	to	maintain	
•  Mostly	eliminated,	but	sLll	needed	to	eliminate	
some	leaks	in	fork	

•  GeneraLon	counter	is	a	useful	trick	for	lazy	deleLon	
–  Used	in	many	systems	
–  Idea:	Transparently	replace	key	“Foo”	with	“Foo:0”.		Upon	
deleLon,	require	next	creaLon	to	rename	“Foo”	to	“Foo:
1”.		Eliminates	accidental	use	of	stale	data.	

27	

CSE	506:	Opera.ng	Systems	

Other	misc.	opLmizaLons	
•  On	super-computers,	were	hiwng	the	8k	limit	on	
segment	descriptors	

•  Where	does	the	8k	limit	come	from?	
–  Bits	in	the	segment	descriptor.		Hardware-level	limit	

•  How	solved?	
–  EssenLally,	kernel	scheduler	swaps	them	out	if	needed	
–  Is	this	the	common	case?	
–  No,	expect	8k	to	be	enough	

28	

CSE	506:	Opera.ng	Systems	

OpLmizaLons	
•  OpLmized	exit	performance	for	100k	threads	from	
15	minutes	to	2	seconds!	

•  PID	space	increased	to	2	billion	threads	
–  /proc	file	system	able	to	handle	more	than	64k	processes	

29	

CSE	506:	Opera.ng	Systems	

Results	
•  Big	speedups!		Yay!	

30	

CSE	506:	Opera.ng	Systems	

Summary	
•  Nice	paper	on	the	pracLcal	concerns	and	trade-offs	
in	building	a	threading	library	
–  I	enjoyed	this	reading	very	much	

•  Understand	1:1	vs.	m:n	model	
–  User	vs.	kernel-level	threading	

•  Understand	other	key	implementaLon	issues	
discussed	in	the	paper	

31	

