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Networking (2 parts) 

ò  Goals: 

ò  Review networking basics 

ò  Discuss APIs  

ò  Trace how a packet gets from the network device to the 
application (and back) 

ò  Understand Receive livelock and NAPI 



4 to 7 layer diagram 
(from Understanding Linux Network Internals) 
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At each layer, numerous protocols are available. At the lowest level, where interfaces
exchange data, the protocol in use is predetermined. A driver for that protocol is
associated with the interface, and all data that comes in on the interface is assumed
to follow the protocol (i.e., Ethernet); if it doesn’t, errors are reported and no com-
munication takes place.

But once the driver has to hand over data to a higher layer, a choice of protocols
ensues. Should data at L3 be handled by IPv4, IPv6, IPX (the Novell NetWare proto-
col), DECnet, or some other network-layer protocol? And a similar choice must be
made going from L3 to L4, where TCP, UDP, ICMP, and other protocols reside.

This chapter deals with the lower three layers and briefly touches on the fourth one.

An individual package of transmitted data is commonly called a frame on the link
layer, L2; a packet on the network layer; a segment on the transport layer; and a
message on the application layer.

The layers are often called the network stack, because communication travels down
the layers until it is physically transmitted across the wire (or wireless bands) and
then travels back up. Headers are also added and removed in a LIFO manner.

The Big Picture
Figure 13-2 builds on the TCP/IP model in Figure 13-1. Figure 13-2 shows which
chapter covers each interface between adjacent layers. Some of these interfaces involve
communication down the stack, whereas others involve communication upward:

Going up in the stack (for receiving a message)
This chapter describes how ingress traffic is handed to the right protocol han-
dler. (The meaning of ptype_base and ptype_all will become clear in the section
“Protocol Handler Organization.”)

Figure 13-1. OSI and TCP/IP models
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Nomenclature 

ò  Frame: hardware 

ò  Packet: IP 

ò  Segment: TCP/UDP 

ò  Message: Application 



TCP/IP Reality 

ò  The OSI model is great for undergrad courses 

ò  TCP/IP (or UDP) is what the majority of  programs use 

ò  Some random things (like networked disks) just use 
ethernet + some custom protocols 



Ethernet  
(or 802.2 or 802.3) 

ò  All slight variations on a theme (3 different standards) 

ò  Simple packet layout: 

ò  Header: Type, source MAC address, destination MAC 
address, length, (and a few other fields) 

ò  Data block (payload) 

ò  Checksum 

ò  Higher-level protocols “nested” inside payload 

ò  “Unreliable” – no guarantee a packet will be delivered 



Ethernet History 

ò  Originally designed for a shared wire (e.g., coax cable) 

ò  Each device listens to all traffic 

ò  Hardware filters out traffic intended for other hosts 

ò  I.e., different destination MAC address 

ò  Can be put in “promiscuous” mode, and record 
everything (called a network sniffer) 

ò  Sending: Device hardware automatically detects if  
another device is sending at same time 

ò  Random back-off  and retry  



Early competition 

ò  Token-ring network: Devices passed a “token” around 

ò  Device with the token could send; all others listened 

ò  Like the “talking stick” in a kindergarten class 

ò  Send latencies increased proportionally to the number of  
hosts on the network 

ò  Even if  they weren’t sending anything (still have to pass 
the token) 

ò  Ethernet has better latency under low contention and 
better throughput under high 



Token ring 

Source: http://www.datacottage.com/nch/troperation.htm 



Shared vs Switched 

Source: http://www.industrialethernetu.com/courses/401_3.htm 



Switched networks 

ò  Modern ethernets are switched 

ò  What is a hub vs. a switch? 

ò  Both are a box that links multiple computers together 

ò  Hubs broadcast to all plugged-in computers (let computers 
filter traffic) 

ò  Switches track who is plugged in, only send to expected 
recipient 

ò  Makes sniffing harder L 



Internet Protocol (IP) 

ò  2 flavors: Version 4 and 6 

ò  Version 4 widely used in practice---today’s focus 

ò  Provides a network-wide unique device address (IP 
address) 

ò  This layer is responsible for routing data across multiple 
ethernet networks on the internet 

ò  Ethernet packet specifies its payload is IP 

ò  At each router, payload is copied into a new point-to-point 
ethernet frame and sent along  



Transmission Control 
Protocol (TCP) 

ò  Higher-level protocol that layers end-to-end reliability, 
transparent to applications 

ò  Lots of  packet acknowledgement messages, sequence 
numbers, automatic retry, etc. 

ò  Pretty complicated 

ò  Applications on a host are assigned a port number 

ò  A simple integer from 0-64k 

ò  Multiplexes many applications on one device 

ò  Ports below 1k reserved for privileged applications 



User Datagram Protocol 
(UDP) 

ò  The simple alternative to TCP 

ò  None of  the frills (no reliability guarantees) 

ò  Same port abstraction (1-64k) 

ò  But different ports 

ò  I.e., TCP port 22 isn’t the same port as UDP port 22 



Some well-known ports 

ò  80 – http 

ò  22 – ssh 

ò  53 – DNS 

ò  25 – SMTP 



Example 
(from Understanding Linux Network Internals) 
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Link layer, Server Y
Stripping off the L2 header, this layer checks a field to see which protocol han-
dles the L3 layer. Finding that L3 is handled by IP, the link layer invokes the
appropriate function to continue handling the L3 packet (i.e., L2 payload). Most
of this chapter discusses the manner in which protocols register themselves and
handle the key field indicating which protocol to use.

Network layer, Server Y
This layer recognizes that its own system’s IP address, 208.201.239.37, is the
destination address in the packet and therefore that the packet should be han-
dled locally. The network layer strips off the L3 header and once again checks a
field to see what protocol handles L4. Chapter 24 offers an in-depth description
of the interface between L3 and L4 for ingress traffic.

Figure 13-4 shows how a header is added by each network layer as each one takes
the data from a higher layer. The last step, from Figure 13-4(d) to Figure 13-4(e),
shows the difference between the original frame transmitted to Router RT1 by Host
X and the one between Router RT1 and Router RT2.

Figure 13-4. Headers compiled by layers: (a…d) on Host X as we travel down the stack; (e) on
Router RT1
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Src port=5000
Dst port=80

Src port=5000
Dst port=80

Src IP=100.100.100.100
Dst IP=208.201.239.37
Transport protocol=TCP

Src port=5000
Dst port=80

Src IP=100.100.100.100
Dst IP=208.201.239.37
Transport protocol=TCP

Src MAC=00:20:ed:76:00:01
Dst MAC=00:20:ed:76:00:02
Internet protocol=IPv4

Src port=5000
Dst port=80

Src IP=100.100.100.100
Dst IP=208.201.239.37
Transport protocol=TCP

Src MAC=00:20:ed:76:00:03
Dst MAC=00:20:ed:76:00:04
Internet protocol=IPv4

Transport layer payload

Network layer payload

Link layer payload



Networking APIs 

ò  Programmers rarely create ethernet frames 

ò  Most applications use the socket abstraction 

ò  Stream of  messages or bytes between two applications 

ò  Applications still specify: protocol (TCP vs. UDP), remote host 
address 

ò  Whether reads should return a stream of  bytes or distinct 
messages 

ò  While many low-level details are abstracted, programmers 
must understand basics of  low-level protocols 



Sockets, cont. 

ò  One application is the server, or listens on a pre-
determined port for new connections 

ò  The client connects to the server to create a message 
channel 

ò  The server accepts the connection, and they begin 
exchanging messages 



Creation APIs 

ò  int socket(domain, type, protocol) – create a file handle 
representing the communication endpoint 

ò  Domain is usually AF_INET (IP4), many other choices 

ò  Type can be STREAM, DGRAM, RAW 

ò  Protocol – usually 0 

ò  int bind(fd, addr, addrlen) – bind this socket to a specific 
port, specified by addr 

ò  Can be INADDR_ANY (don’t care what port) 



Server APIs 

ò  int listen(fd, backlog) – Indicate you want incoming 
connections 

ò  Backlog is how many pending connections to buffer until 
dropped 

ò  int accept(fd, addr, len, flags) – Blocks until you get a 
connection, returns where from in addr 

ò  Return value is a new file descriptor for child 

ò  If  you don’t like it, just close the new fd 



Client APIs 

ò  Both client and server create endpoints using socket() 

ò  Server uses bind, listen, accept 

ò  Client uses connect(fd, addr, addrlen) to connect to server 

ò  Once a connection is established: 

ò  Both use send/recv 

ò  Pretty self-explanatory calls 



Client/server toy example 

ò  Quick demo .. 

ò  Client/server code from  

http://www.linuxhowtos.org/C_C++/socket.htm 



Linux implementation 

ò  Sockets implemented in the kernel 

ò  So are TCP, UDP and IP  

ò  Benefits:  

ò  Application doesn’t need to be scheduled for TCP ACKs, 
retransmit, etc. 

ò  Kernel trusted with correct delivery of  packets 

ò  A single system call (i386): 

ò  sys_socketcall(call, args) 

ò  Has a sub-table of  calls, like bind, connect, etc. 



Plumbing 

ò  Each message is put in a sk_buff  structure 

ò  Between socket/application and device, the sk_buff  is 
passed through a stack of  protocol handlers 

ò  These handlers update internal bookkeeping, wrap 
payload in their headers, etc. 

ò  At the bottom is the device itself, which sends/receives 
the packets 



sk_buff  
(from Understanding Linux Networking Internals) 
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data with a protocol header, or the gap between tail and end with new data.
You will see in the later section “Allocating memory: alloc_skb and dev_alloc_
skb” that the buffer on the right side of Figure 2-2 includes an additional header
at the bottom.

void (*destructor)(...)
This function pointer can be initialized to a routine that performs some activity
when the buffer is removed. When the buffer does not belong to a socket, the
destructor is usually not initialized. When the buffer belongs to a socket, it is
usually set to sock_rfree or sock_wfree (by the skb_set_owner_r and skb_set_
owner_w initialization functions, respectively). The two sock_xxx routines are
used to update the amount of memory held by the socket in its queues.

General Fields
This section covers the majority of sk_buff fields, which are not associated with spe-
cific kernel features:

struct timeval stamp
This is usually meaningful only for a received packet. It is a timestamp that rep-
resents when a packet was received or (occasionally) when one is scheduled for
transmission. It is set by the function netif_rx with net_timestamp, which is
called by the device driver after the reception of each packet and is described in
Chapter 21.

struct net_device *dev
This field, whose type (net_device) will be described in more detail later in the
chapter, describes a network device. The role of the device represented by dev
depends on whether the packet stored in the buffer is about to be transmitted or
has just been received.

Figure 2-2. head/end versus data/tail pointers
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Efficient packet processing 

 

ò  Moving pointers is more efficient than removing headers 

ò  Appending headers is more efficient than re-copy 

 



Walk through how a rcvd packet is  
processed 

Source = http://www.cs.unh.edu/cnrg/people/gherrin/linux-net.html#tth_sEc6.2 



Interrupt handler 

ò  “Top half ” responsible to: 

ò  Allocate a buffer (sk_buff) 

ò  Copy received data into the buffer 

ò  Initialize a few fields 

ò  Call “bottom half ” handler 

ò  In some cases, sk_buff  can be pre-allocated, and network 
card can copy data in (DMA) before firing the interrupt 

ò  Lab 6 will follow this design 



Quick review 

ò  Why top and bottom halves? 

ò  To minimize time in an interrupt handler with other 
interrupts disabled 

ò  Gives kernel more scheduling flexibility 

ò  Simplifies service routines (defer complicated operations 
to a more general processing context) 



Digression: Softirqs 

ò  A hardware IRQ is the hardware interrupt line 

ò  Also used for hardware “top half ” 

ò  Soft IRQ is the associated software “interrupt” handler 

ò  Or, “bottom half ” 

ò  How are these implemented in Linux? 

ò  Two canonical ways: Softirq and Tasklet 

ò  More general than just networking 



Softirqs 

ò  Kernel’s view: per-CPU work lists 

ò  Tuples of  <function, data> 

ò  At the right time, call function(data) 

ò  Right time: Return from exceptions/interrupts/sys. calls 

ò  Also, each CPU has a kernel thread ksoftirqd_CPU# that 
processes pending requests 

ò  ksoftirqd is nice +19.  What does that mean? 

ò  Lowest priority – only called when nothing else to do 



Softirqs, cont. 

ò  Device programmer’s view: 

ò  Only one instance of  a softirq function will run on a CPU at a 
time  

ò  Doesn’t need to be reentrant 

ò  reentrant if  it can be interrupted in the middle of  its execution 
and then safely called again ("re-entered") before its previous 
invocations complete execution 

ò  If  interrupted, won’t be called again by interrupt handler 

ò  Subsequent calls enqueued! 

ò  One instance can run on each CPU concurrently, though 

ò  Must use locks  



Tasklets 

ò  For the faint of  heart (and faint of  locking prowess) 

ò  Constrained to only run one at a time on any CPU 

ò  Useful for poorly synchronized device drivers 

ò  Say those that assume a single CPU in the 90’s 

ò  Downside: If  your driver uses tasklets, and you have 
multiple devices of  the same type---the bottom halves of  
different devices execute serially 



Softirq priorities 

ò  Actually, there are 6 queues per CPU; processed in 
priority order: 

ò  HI_SOFTIRQ (high/first) 

ò  TIMER 

ò  NET TX 

ò  NET RX 

ò  SCSI 

ò  TASKLET (low/last) 



Observation 1 

ò  Devices can decide whether their bottom half  is higher 
or lower priority than network traffic (HI or TASKLET) 

ò  Example: Video capture device may want to run its 
bottom half  at HI, to ensure quality of  service 

ò  Example: Printer may not care 



Observation 2 

ò  Transmit traffic prioritized above receive.  Why? 

ò  The ability to send packets may stem the tide of  incoming 
packets 

ò  Obviously eliminates retransmit requests based on timeout 

ò  Can also send “back-off ” messages 



Receive bottom half  

ò  For each pending sk_buff: 

ò  Pass a copy to any taps (sniffers) 

ò  Do any MAC-layer processing, like bridging 

ò  Pass a copy to the appropriate protocol handler (e.g., IP) 

ò  Recur on protocol handler until you get to a port 

ò  Perform some handling transparently (filtering, ACK, retry) 

ò  If  good, deliver to associated socket 

ò  If  bad, drop 



Socket delivery 

ò  Once the bottom half/protocol handler moves a payload 
into a socket: 

ò  Check and see if  the task is blocked on input for this 
socket  

ò  If  so, wake it up 

ò  Read/recv system calls copy data into application 



Socket sending 

ò  Send/write system calls copy data into socket 

ò  Allocate sk_buff  for data 

ò  Be sure to leave plenty of  head and tail room! 

ò  System call does protocol handling during application’s 
timeslice 

ò  Note that receive handling done during ksoftirqd timeslice 

ò  Last protocol handler enqueues a softirq to transmit 



Transmission 

ò  Softirq can go ahead and invoke low-level driver to do a 
send 

ò  Interrupt usually signals completion 

ò  Interrupt handler just frees the sk_buff  



Switching gears 

ò  We’ve seen the path network data takes through the 
kernel in some detail 

ò  Now, let’s talk about how network drivers handle heavy 
loads 



Our cup runneth over 

ò  Suppose an interrupt fires every time a packet comes in 

ò  This takes N ms to process the interrupt 

ò  What happens when packets arrive at a frequency 
approaching or exceeding N? 

ò  You spend all of  your time handling interrupts! 

ò  Will the bottom halves for any of  these packets get 
executed? 

ò  No.  They are lower-priority than new packets 



Receive livelock 

ò  The condition that the system never makes progress 
because it spends all of  its time starting to process new 
packets 

ò  Real problem: Hard to prioritize other work over 
interrupts 

ò  Principle: Better to process one packet to completion 
than to run just the top half  on a million 



Receive livelock in practice 

Source:  Mogul & Ramakrishnan, ToCS 96 

Ideal 



Shedding load 

ò  If  you can’t process all incoming packets, you must drop 
some 

ò  Principle: If  you are going to drop some packets, better 
do it early! 

ò  If  you quit taking packets off  of  the network card, the 
network card will drop packets once its buffers get full 



Idea 

ò  Under heavy load, disable the network card’s interrupts 

ò  Use polling instead 

ò  Ask if  there is more work once you’ve done the first batch 

ò  This allows a packet to make it all the way through all of  
the bottom half  processing, the application, and get a 
response back out 

ò  Ensuring some progress!  Yay! 



Why not poll all the time? 

ò  If  polling is so great, why even bother with interrupts? 

ò  Latency: When incoming traffic is rare, we want high-
priority, latency-sensitive applications to get their data 
ASAP 



General insight 

ò  If  the expected input rate is low, interrupts are better 

ò  When the expected input rate gets above a certain 
threshold, polling is better 

ò  Just need to figure out a way to dynamically switch 
between the two methods… 



Pictorially.. 

Source: download.intel.com/design/intarch/PAPERS/323704.pdf 



Why haven’t we seen this 
before? 

ò  Why don’t disks have this problem? 

ò  Inherently rate limited 

ò  If  the CPU is bogged down processing previous disk 
requests, it can’t issue more 

ò  An external CPU can generate all sorts of  network 
inputs 



Linux NAPI 

ò  Or New API.  Seriously. 

ò  Every driver provides a poll() method that does the low-
level receive 

ò  Called in first step of  softirq RX function 

ò  Top half  just schedules poll() to do the receive as softirq 

ò  Can disable the interrupt under heavy loads; use timer 
interrupt to schedule a poll 

ò  Bonus: Some rare NICs have a timer; can fire an interrupt 
periodically, only if  something to say! 



NAPI 

ò  Gives kernel control to throttle network input 

ò  Slow adoption – means some measure of  driver rewriting 

ò  Backwards compatibility solution: 

ò  Old top half  still creates sk_buffs and puts them in a queue 

ò  Queue assigned to a fake “backlog” device 

ò  Backlog poll device is scheduled by NAPI softirq 

ò  Interrupts can still be disabled 



NAPI Summary 

ò  Too much input is a real problem 

ò  NAPI lets kernel throttle interrupts until current packets 
processed 

ò  Softirq priorities let some devices run their bottom halves 
before net TX/RX 

ò  Net TX handled before RX 



General summary 

ò  Networking basics and APIs 

ò  Idea of  plumbing from socket to driver 

ò  Through protocol handlers and softirq poll methods 

ò  NAPI and input throttling 


