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Housekeeping

 Next Tuesday’s class has a reading assignment
e Lab 1 due Friday 2/5
e All students should have VMs and private repos soon

— A lot of the lab is reading, so you can go ahead and start if
they are not available
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Background: Control Flow

»// X =2,y = void printf(va args)
true {
if (y) | //...
2 /= x; }
printf (x) ;
y // ...

Regular control flow: branches and calls
(logically follows source code)
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Background: Control Flow

void handle diwvzero ()
Divide by zero! { -

Program can’t make

progress!

printf (x) ;
y //. ..

Irregular control flow: exceptions, system calls, etc.
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Lecture goal

e Understand the hardware tools available for
irregular control flow.

— |.e., things other than a branch in a running program

* Building blocks for context switching, device
management, etc.
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Two types of interrupts

e Synchronous: will happen every time an instruction
executes (with a given program state)

— Divide by zero
— System call
— Bad pointer dereference
* Asynchronous: caused by an external event

— Usually device I/O
— Timer ticks (well, clocks can be considered a device)
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Intel nomenclature

* Interrupt — only refers to asynchronous interrupts
e Exception — synchronous control transfer

* Note: from the programmer’s perspective, these are
handled with the same abstractions
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Lecture outline

* Overview
* How interrupts work in hardware
* How interrupt handlers work in software

 How system calls work

* New system call hardware on x86
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Interrupt overview

* Each interrupt or exception includes a number
indicating its type

 E.g., 14 is a page fault, 3 is a debug breakpoint

* This number is the index into an interrupt table
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Xx86 interrupt table

Device IRQs

0

255

31 47

Software Configurable

Reserved for
the CPU
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X86 Iinterrupt overview

e Each type of interrupt is assigned an index from 0—
255.

e 0—31 are for processor interrupts; generally fixed by
Intel
— E.g., 14 is always for page faults

e 32—255 are software configured

— 32—47 are for device interrupts (IRQs) in JOS
* Most device’s IRQ line can be configured
* Look up APICs for more info (Ch 4 of Bovet and Cesati)

— 0x80 issues system call in Linux (more on this later)
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Software interrupts

e The int <num> instruction allows software to
raise an interrupt

— 0x80 is just a Linux convention. JOS uses 0x30.
 There are a lot of spare indices

— You could have multiple system call tables for different
purposes or types of processes!

 Windows does: one for the kernel and one for win32k
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Software interrupts, cont

* OS setsring level required to raise an interrupt

— Generally, user programs can’tissue an int 14 (page
fault) manually

— An unauthorized int instruction causes a general
protection fault
* Interrupt 13
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What happens (generally):

e Control jumps to the kernel
— At a prescribed address (the interrupt handler)

* The register state of the program is dumped on the
kernel’s stack

— Sometimes, extra info is loaded into CPU registers

— E.g., page faults store the address that caused the fault in
the cr2 register

 Kernel code runs and handles the interrupt

 When handler completes, resume program (see
iret instr.)
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How it works (HW)

e How does HW know what to execute?

* Where does the HW dump the registers; what does it
use as the interrupt handler’s stack?
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How is this configured?

* Kernel creates an array of Interrupt descriptors in
memory, called Interrupt Descriptor Table, or IDT

— Can be anywhere in memory

— Pointed to by special register (idtr)
e c.f.,, segment registers and gdtr and 1ldtr

* Entry O configures interrupt O, and so on
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Xx86 interrupt table

I EI IR ES NI I EN
31 47 25

5

Linear Address of
Interrupt Table
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Xx86 interrupt table

idtr
0 31 47 255

14

Code Segment: Kernel Code

Segment Offset: &page fault handler //linear addr
Ring: 0 // kernel

Present: 1

Gate Type: Exception
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Interrupt Descriptor

 Code segment selector
— Almost always the same (kernel code segment)
— Recall, this was designed before paging on x86!

* Segment offset of the code to run

— Kernel segment is “flat”, so this is just the linear address
* Privilege Level (ring)
— Ring that can raise this interrupt with an int instruction

* Present bit — disable unused interrupts

* Gate type (interrupt or trap/exception) — more in a
bit
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Xx86 interrupt table

idtr

v
0 3 31 47 25

5

Code Segment: Kernel Code

Segment Offset: &breakpoint handler //linear addr
Ring: 3 // user

Present: 1

Gate Type: Exception
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Interrupt Descriptors, ctd.

* In-memory layout is a bit confusing

— Like a lot of the x86 architecture, many interfaces were
later deprecated

* Worth comparing Ch 9.5 of the i386 manual with inc/
mmu.h in the JOS source code
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How it works (HW)

* How does HW know what to execute?
— Interrupt descriptor table specifies what code to run

* And at what privilege (via code segment)

— This can be set up once during boot for the whole system

* Where does the HW dump the registers; what does it
use as the interrupt handler’s stack?

— Specified in the Task State Segment
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Task State Segment (TSS)

* Another segment, just like the code and data
segment

— A descriptor created in the GDT (cannot be in LDT)
— Selected by special task register (tr)

— Unlike others, has a hardware-specified layout

* Lots of fields for rarely-used features

 Two features we care about in a modern OS:
— 1) Location of kernel stack (fields ssO/esp0)
— 2) 1/O Port privileges (more in a later lecture)
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1TSS, cont.

* Simple model: specify a TSS for each process
— Note: Only 2213 entries in the GDT

e Optimization (JOS):
— Our kernel is pretty simple (uniprocessor only)

— Why not just share one TSS and kernel stack per-process?

* Linux generalization:
— One TSS per CPU
— Modify TSS fields as part of context switching
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Summary
* Most interrupt handling hardware state set during
boot

 Each interrupt has an IDT entry specifying:
— What code to execute, privilege level to raise the interrupt

e Stack to use specified in the TSS
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Comment

* Again, segmentation rears its head

* You can’t program OS-level code on x86 without
getting your hands dirty with it

* Helps to know which features are important when
reading the manuals
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Lecture outline

* Overview
* How interrupts work in hardware
* How interrupt handlers work in software

 How system calls work

* New system call hardware on x86
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High-level goal
 Respond to some event, return control to the
appropriate process

* What to do on:
— Network packet arrives
— Disk read completion
— Divide by zero

— System call
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Interrupt Handlers

e Just plain old kernel code
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Example

Stack

o

Stack

if (x) |
prlntf(“Boo”),

‘ Disk handler () {

}

printf (va_args..) {
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Complication:
 What happens if I’'m in an interrupt handler, and
another interrupt comes in?
— Note: kernel stack only changes on privilege level change

— Nested interrupts just push the next frame on the stack

 What could go wrong?
— Violate code invariants
— Deadlock
— Exhaust the stack (if too many fire at once)
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Example
Stack

disk handler () {

if (x) { lock _kernel() ;

e (B
printf (“Boo unlock kernel ()

|

| ...
printf (va_args..) { I et_handler () {
|

lock kernel();
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Bottom Line:

* Interrupt service routines must be reentrant or
synchronize

e Period.
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Hardware interrupt sync.

 While a CPU is servicing an interrupt on a given IRQ
line, the same IRQ won’t raise another interrupt until

the routine completes

— Bottom-line: device interrupt handler doesn’t have to
worry about being interrupted by itself

* Adifferent device can interrupt the handler
— Problematic if they share data structures

— Like a list of free physical pages...
— What if both try to grab a lock for the free list?
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Disabling interrupts

* An x86 CPU can disable I/O interrupts
— Clear bit 9 of the EFLAGS register (IF Flag)
— c1li and sti instructions clear and set this flag

e Before touching a shared data structure (or grabbing
a lock), an interrupt handler should disable I/0
interrupts
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Gate types

* Recall: an IDT entry can be an interrupt or an
exception gate

e Difference?

— An interrupt gate automatically disables all other
interrupts (i.e., clears and sets IF on enter/exit)

— An exception gate doesn’t

* Thisis just a programmer convenience: you could do
the same thing in software
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Exceptions
* You can’t mask exceptions
— Why not?

* Can’t make progress after a divide-by-zero
— Double and Triple faults detect faults in the kernel
* Do exception handlers need to be reentrant?
— Not if your kernel has no bugs (or system calls in itself)

— In certain cases, Linux allows nested page faults
* E.g., to detect errors copying user-provided buffers
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Summary

* Interrupt handlers need to synchronize, both with
locks (multi-processor) and by disabling interrupts
(same CPU)

* Exception handlers can’t be masked

— Nested exceptions generally avoided
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Lecture outline

* Overview

* How interrupts work in hardware

* How interrupt handlers work in software
 How system calls work

* New system call hardware on x86
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III

System call “interrupt”

e Originally, system calls issued using int instruction

* Dispatch routine was just an interrupt handler

* Like interrupts, system calls are arranged in a table
— See arch/x86/kernel/syscall_table*.S in Linux source

* Program selects the one it wants by placing index in
eax register
— Arguments go in the other registers by calling convention
— Return value goes in eax
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Lecture outline

* Overview

* How interrupts work in hardware

* How interrupt handlers work in software
 How system calls work

* New system call hardware on x86
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Around P4 era...

* Processors got very deeply pipelined
— Pipeline stalls/flushes became very expensive
— Cache misses can cause pipeline stalls
e System calls took twice as long from P3 to P4
— Why?
— IDT entry may not be in the cache
— Different permissions constrain instruction reordering
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ldea

 What if we cache the IDT entry for a system call in a
special CPU register?

— No more cache misses for the IDT!

— Maybe we can also do more optimizations
 Assumption: system calls are frequent enough to be

worth the transistor budget to implement this

— What else could you do with extra transistors that helps
performance?
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AMD: syscall/sysret

* These instructions use MSRs (machine specific
registers) to store:

— Syscall entry point and code segment
— Kernel stack

 Adrop-inreplacement for int 0x80

* Everyone loved it and adopted it wholesale
— Even Intel!
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Aftermath
e Getpid() on my desktop machine (recent AMD 6-
core):

— Int 80: 371 cycles
— Syscall: 231 cycles

e So system calls are definitely faster as a result!
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In JOS

* You will use the int instruction to implement system
calls

* There is a challenge problem in lab 3 (i.e., extra
credit) to use systenter/sysexit

— Note that there are some more details about register
saving to deal with

— Syscall/sysret is a bit too trivial for extra credit

* But still cool if you get it working!
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Summary

* Interrupt handlers are specified in the IDT

* Understand when nested interrupts can happen
— And how to prevent them when unsafe

* Understand optimized system call instructions
— Be able to explain syscall vs. int 80




