777N\ — — i —
QI stony Brook University CSE 506: Operating Systems

Interrupts and System Calls

Don Porter
CSE 506



777N\ — — i —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

Housekeeping

 Next Tuesday’s class has a reading assignment
e Lab 1 due Friday 2/5
e All students should have VMs and private repos soon

— A lot of the lab is reading, so you can go ahead and start if
they are not available




QI stony Brook University CSE 506: Operating Systems

Logical Diagram

Binary Memory
User

System Calls Kernel

Memory CPU
Management ) Scheduler

/™ —
Hardware

Interrupts Consistency




Q\\\‘ Stony Brook University CSE 506: Operating Systems

Background: Control Flow

»// X =2,y = void printf(va args)
true {
if (y) | //...
2 /= x; }
printf (x) ;
y // ...

Regular control flow: branches and calls
(logically follows source code)



QI stony Brook University CSE 506: Operating Systems

Background: Control Flow

void handle diwvzero ()
Divide by zero! { -

Program can’t make

progress!

printf (x) ;
y //. ..

Irregular control flow: exceptions, system calls, etc.



777N\ — — i —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

Lecture goal

e Understand the hardware tools available for
irregular control flow.

— |.e., things other than a branch in a running program

* Building blocks for context switching, device
management, etc.




777N\ — — i —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

Two types of interrupts

e Synchronous: will happen every time an instruction
executes (with a given program state)

— Divide by zero
— System call
— Bad pointer dereference
* Asynchronous: caused by an external event

— Usually device I/O
— Timer ticks (well, clocks can be considered a device)



777N\ — — i —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

Intel nomenclature

* Interrupt — only refers to asynchronous interrupts
e Exception — synchronous control transfer

* Note: from the programmer’s perspective, these are
handled with the same abstractions




Q\\\‘ Stony Brook University CSE 506: Operating Systems

Lecture outline

* Overview
* How interrupts work in hardware
* How interrupt handlers work in software

 How system calls work

* New system call hardware on x86




777N\ — — i —
1\\\‘ Stony Brook University CSE 506: Operating Systems

Interrupt overview

* Each interrupt or exception includes a number
indicating its type

 E.g., 14 is a page fault, 3 is a debug breakpoint

* This number is the index into an interrupt table




QI stony Brook University CSE 506: Operating Systems

Xx86 interrupt table

Device IRQs

0

255

31 47

Software Configurable

Reserved for
the CPU




o NN . e —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

X86 Iinterrupt overview

e Each type of interrupt is assigned an index from 0—
255.

e 0—31 are for processor interrupts; generally fixed by
Intel
— E.g., 14 is always for page faults

e 32—255 are software configured

— 32—47 are for device interrupts (IRQs) in JOS
* Most device’s IRQ line can be configured
* Look up APICs for more info (Ch 4 of Bovet and Cesati)

— 0x80 issues system call in Linux (more on this later)




777N\ — — i —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

Software interrupts

e The int <num> instruction allows software to
raise an interrupt

— 0x80 is just a Linux convention. JOS uses 0x30.
 There are a lot of spare indices

— You could have multiple system call tables for different
purposes or types of processes!

 Windows does: one for the kernel and one for win32k



777N\ — — i —
1\\\‘ Stony Brook University CSE 506: Operating Systems

Software interrupts, cont

* OS setsring level required to raise an interrupt

— Generally, user programs can’tissue an int 14 (page
fault) manually

— An unauthorized int instruction causes a general
protection fault
* Interrupt 13




Q\\\‘ Stony Brook University CSE 506: Operating Systems

What happens (generally):

e Control jumps to the kernel
— At a prescribed address (the interrupt handler)

* The register state of the program is dumped on the
kernel’s stack

— Sometimes, extra info is loaded into CPU registers

— E.g., page faults store the address that caused the fault in
the cr2 register

 Kernel code runs and handles the interrupt

 When handler completes, resume program (see
iret instr.)



Q\\\‘ Stony Brook University CSE 506: Operating Systems

How it works (HW)

e How does HW know what to execute?

* Where does the HW dump the registers; what does it
use as the interrupt handler’s stack?




777N\ — — i —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

How is this configured?

* Kernel creates an array of Interrupt descriptors in
memory, called Interrupt Descriptor Table, or IDT

— Can be anywhere in memory

— Pointed to by special register (idtr)
e c.f.,, segment registers and gdtr and 1ldtr

* Entry O configures interrupt O, and so on



QI stony Brook University CSE 506: Operating Systems

Xx86 interrupt table

I EI IR ES NI I EN
31 47 25

5

Linear Address of
Interrupt Table




QI stony Brook University CSE 506: Operating Systems

Xx86 interrupt table

idtr
0 31 47 255

14

Code Segment: Kernel Code

Segment Offset: &page fault handler //linear addr
Ring: 0 // kernel

Present: 1

Gate Type: Exception



o NN . e —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

Interrupt Descriptor

 Code segment selector
— Almost always the same (kernel code segment)
— Recall, this was designed before paging on x86!

* Segment offset of the code to run

— Kernel segment is “flat”, so this is just the linear address
* Privilege Level (ring)
— Ring that can raise this interrupt with an int instruction

* Present bit — disable unused interrupts

* Gate type (interrupt or trap/exception) — more in a
bit



QI stony Brook University CSE 506: Operating Systems

Xx86 interrupt table

idtr

v
0 3 31 47 25

5

Code Segment: Kernel Code

Segment Offset: &breakpoint handler //linear addr
Ring: 3 // user

Present: 1

Gate Type: Exception



777N\ — — i —
1\\\‘ Stony Brook University CSE 506: Operating Systems

Interrupt Descriptors, ctd.

* In-memory layout is a bit confusing

— Like a lot of the x86 architecture, many interfaces were
later deprecated

* Worth comparing Ch 9.5 of the i386 manual with inc/
mmu.h in the JOS source code




Q\\\‘ Stony Brook University CSE 506: Operating Systems

How it works (HW)

* How does HW know what to execute?
— Interrupt descriptor table specifies what code to run

* And at what privilege (via code segment)

— This can be set up once during boot for the whole system

* Where does the HW dump the registers; what does it
use as the interrupt handler’s stack?

— Specified in the Task State Segment



o NN . e —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

Task State Segment (TSS)

* Another segment, just like the code and data
segment

— A descriptor created in the GDT (cannot be in LDT)
— Selected by special task register (tr)

— Unlike others, has a hardware-specified layout

* Lots of fields for rarely-used features

 Two features we care about in a modern OS:
— 1) Location of kernel stack (fields ssO/esp0)
— 2) 1/O Port privileges (more in a later lecture)



777N\ — — i —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

1TSS, cont.

* Simple model: specify a TSS for each process
— Note: Only 2213 entries in the GDT

e Optimization (JOS):
— Our kernel is pretty simple (uniprocessor only)

— Why not just share one TSS and kernel stack per-process?

* Linux generalization:
— One TSS per CPU
— Modify TSS fields as part of context switching



1\\\‘ Stony Brook University CSE 506: Operating Systems
Summary
* Most interrupt handling hardware state set during
boot

 Each interrupt has an IDT entry specifying:
— What code to execute, privilege level to raise the interrupt

e Stack to use specified in the TSS




Q\\\‘ Stony Brook University CSE 506: Operating Systems

Comment

* Again, segmentation rears its head

* You can’t program OS-level code on x86 without
getting your hands dirty with it

* Helps to know which features are important when
reading the manuals




777N\ — — i —
1\\\‘ Stony Brook University CSE 506: Operating Systems

Lecture outline

* Overview
* How interrupts work in hardware
* How interrupt handlers work in software

 How system calls work

* New system call hardware on x86




777N\ — — i —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

High-level goal
 Respond to some event, return control to the
appropriate process

* What to do on:
— Network packet arrives
— Disk read completion
— Divide by zero

— System call



777N\ — — i —
‘\\\‘ Stony Brook University CSE 506: Operating Systems

Interrupt Handlers

e Just plain old kernel code




QI stony Brook University CSE 506: Operating Systems

Example

Stack

o

Stack

if (x) |
prlntf(“Boo”),

‘ Disk handler () {

}

printf (va_args..) {




777N\ — — i —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

Complication:
 What happens if I’'m in an interrupt handler, and
another interrupt comes in?
— Note: kernel stack only changes on privilege level change

— Nested interrupts just push the next frame on the stack

 What could go wrong?
— Violate code invariants
— Deadlock
— Exhaust the stack (if too many fire at once)



QI stony Brook University CSE 506: Operating Systems

Example
Stack

disk handler () {

if (x) { lock _kernel() ;

e (B
printf (“Boo unlock kernel ()

|

| ...
printf (va_args..) { I et_handler () {
|

lock kernel();




777N\ — — i —
‘\\\‘ Stony Brook University CSE 506: Operating Systems

Bottom Line:

* Interrupt service routines must be reentrant or
synchronize

e Period.




o NN . e —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

Hardware interrupt sync.

 While a CPU is servicing an interrupt on a given IRQ
line, the same IRQ won’t raise another interrupt until

the routine completes

— Bottom-line: device interrupt handler doesn’t have to
worry about being interrupted by itself

* Adifferent device can interrupt the handler
— Problematic if they share data structures

— Like a list of free physical pages...
— What if both try to grab a lock for the free list?



777N\ — — i —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

Disabling interrupts

* An x86 CPU can disable I/O interrupts
— Clear bit 9 of the EFLAGS register (IF Flag)
— c1li and sti instructions clear and set this flag

e Before touching a shared data structure (or grabbing
a lock), an interrupt handler should disable I/0
interrupts



777N\ — — i —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

Gate types

* Recall: an IDT entry can be an interrupt or an
exception gate

e Difference?

— An interrupt gate automatically disables all other
interrupts (i.e., clears and sets IF on enter/exit)

— An exception gate doesn’t

* Thisis just a programmer convenience: you could do
the same thing in software



Q\\\‘ Stony Brook University CSE 506: Operating Systems
Exceptions
* You can’t mask exceptions
— Why not?

* Can’t make progress after a divide-by-zero
— Double and Triple faults detect faults in the kernel
* Do exception handlers need to be reentrant?
— Not if your kernel has no bugs (or system calls in itself)

— In certain cases, Linux allows nested page faults
* E.g., to detect errors copying user-provided buffers



777N\ — — i —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

Summary

* Interrupt handlers need to synchronize, both with
locks (multi-processor) and by disabling interrupts
(same CPU)

* Exception handlers can’t be masked

— Nested exceptions generally avoided




777N\ — — i —
1\\\‘ Stony Brook University CSE 506: Operating Systems

Lecture outline

* Overview

* How interrupts work in hardware

* How interrupt handlers work in software
 How system calls work

* New system call hardware on x86




Q\\\‘ Stony Brook University CSE 506: Operating Systems

III

System call “interrupt”

e Originally, system calls issued using int instruction

* Dispatch routine was just an interrupt handler

* Like interrupts, system calls are arranged in a table
— See arch/x86/kernel/syscall_table*.S in Linux source

* Program selects the one it wants by placing index in
eax register
— Arguments go in the other registers by calling convention
— Return value goes in eax



1\\\‘ Stony Brook University CSE 506: Operating Systems

Lecture outline

* Overview

* How interrupts work in hardware

* How interrupt handlers work in software
 How system calls work

* New system call hardware on x86




777N\ — — i —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

Around P4 era...

* Processors got very deeply pipelined
— Pipeline stalls/flushes became very expensive
— Cache misses can cause pipeline stalls
e System calls took twice as long from P3 to P4
— Why?
— IDT entry may not be in the cache
— Different permissions constrain instruction reordering



o NN . e —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

ldea

 What if we cache the IDT entry for a system call in a
special CPU register?

— No more cache misses for the IDT!

— Maybe we can also do more optimizations
 Assumption: system calls are frequent enough to be

worth the transistor budget to implement this

— What else could you do with extra transistors that helps
performance?



Q\\\‘ Stony Brook University CSE 506: Operating Systems

AMD: syscall/sysret

* These instructions use MSRs (machine specific
registers) to store:

— Syscall entry point and code segment
— Kernel stack

 Adrop-inreplacement for int 0x80

* Everyone loved it and adopted it wholesale
— Even Intel!



Q\\\‘ Stony Brook University CSE 506: Operating Systems
Aftermath
e Getpid() on my desktop machine (recent AMD 6-
core):

— Int 80: 371 cycles
— Syscall: 231 cycles

e So system calls are definitely faster as a result!




Q\\\‘ Stony Brook University CSE 506: Operating Systems

In JOS

* You will use the int instruction to implement system
calls

* There is a challenge problem in lab 3 (i.e., extra
credit) to use systenter/sysexit

— Note that there are some more details about register
saving to deal with

— Syscall/sysret is a bit too trivial for extra credit

* But still cool if you get it working!



777N\ — — i —
Q\\\‘ Stony Brook University CSE 506: Operating Systems

Summary

* Interrupt handlers are specified in the IDT

* Understand when nested interrupts can happen
— And how to prevent them when unsafe

* Understand optimized system call instructions
— Be able to explain syscall vs. int 80




