Device I/0
Programming

Don Porter
CSE 506

Overview

+ Many artifacts of hardware evolution

Configurability 1sn’t free
Bake-1n some reasonable assumptions
Initially reasonable assumptions get stale

Find ways to work-around going forward

+ Keep backwards compatibility

<+ General 1ssues and abstractions

PC Hardware Overview

o9 T S
+ From wikipedia
—— IIFSB + Replace AGP with PCle

@) | Northoridge f () @ + Northbndge being
_73 ‘ C(C _e 0 CFP

‘ Southbridge -
= =\
=

I/0 Ports

+ Initial x86 model: separate memory and 1/0 space

Memory uses virtual addresses
Devices accessed via ports

+ A port 1s just an address (like memory)

Port 0x1000 1s not the same as address 0x1000

Different instructions — inb, inw, outl, etc.

More on ports

+ A port maps onto input pins/registers on a device
+ Unlike memory, writing to a port has side-effects

“Launch” opcode to /dev/missiles
So can reading!

Memory can safely duplicate operations/cache results

+ Idiosyncrasy: composition doesn’t necessarily work

outw 0x1010 <port> != outb 0x10 <port>
outb 0x10 <port+1>

Parallel port (+1/0 ports)

(from Linux Device Drivers)
oD *Q-o

76543210
Control port: base_addr + 2 16 L

irq enable J

7 65 43210
Status port: base_addr + 1 tof1fifs] | [| o

Data port:base_addr + 0

KEY

Input line
— QOutputline

3 2 Bit#

Pin
‘\\ .
noninverted

inverted

Figure 9-1. The pinout of the parallel port

Port permissions

+ Can be set with IOPL flag in EFLAGS

+ Or at finer granularity with a bitmap in task state
segment

Recall: this 1s the “other” reason people care about the
TSS

Buses

Buses are the computer’s “plumbing” between major
components

There 1s a bus between RAM and CPUs

There 1s often another bus between certain types of
devices

For inter-operability, these buses tend to have standard
specifications (e.g., PCI, ISA, AGP)

Any device that meets bus specification should work on a
motherboard that supports the bus

Clocks
(again, but different)

+ CPU Clock Speed: What does 1t mean at electrical level?

New inputs raise current on some wires, lower on others
How long to propagate through all logic gates?

Clock speed sets a safe upper bound

+ Things like distance, wire size can affect propagation time
At end of a clock cycle read outputs reliably

+ May be in a transient state mid-cycle

+ Not talking about timer device, which raises interrupts at
wall clock time; talking about CPU GHz

Clock imbalance

+ All processors have a clock

Including the chips on every device in your system
Network card, disk controller, usb controler, etc.

And bus controllers have a clock

<+ Think now about older devices on a newer CPU

Newer CPU has a much faster clock cycle

It takes the older device longer to reliably read input from
a bus than 1t does for the CPU to write it

More clock imbalance

Ex: a CPU might be able to write 4 different values into a
device input register before the device has finished one clock
cycle

Driver writer needs to know this

Read from manuals
Driver must calibrate device access frequency to device
speed

Figure out both speeds, do math, add delays between ops
You will do this 1n lab 6! (outb 0x80 1s handy!)

CISC silliness?

+ Is there any good reason to use dedicated instructions
and address space for devices?

+ Why not treat device input and output registers as
regions of physical memory?

Simplification

+ Map devices onto regions of physical memory

Hardware basically redirects these accesses away from
RAM at same location (if any), to devices

A bummer if you “lose” some RAM

+ Win: Cast interface regions to a structure

Write updates to different areas using high-level languages

Still subject to timing, side-effect caveats

Optimizations

+ How does the compiler (and CPU) know which regions
have side-effects and other constraints?

It doesn’t: programmer must specify!

Optimizations (2)

+ Recall: Common optimizations (compiler and CPU)

Out-of-order execution
Reorder writes
Cache values 1n registers
+ When we write to a device, we want the write to really
happen, now!
Do not keep it in a register, do not collect $200

+ Note: both CPU and compiler optimizations must be disabled

volatile keyword

+ A volatile variable cannot be cached 1n a register

Writes must go directly to memory
Reads must always come from memory/cache

+ volatile code blocks cannot be reordered by the compiler

Must be executed precisely at this point in program

E.g., inline assembly

+ _ volatile_ means I really mean it!

Compiler barriers

+ Inline assembly has a set of clobber registers

Hand-written assembly will clobber them

Compiler’s job is to save values back to memory before
inline asm; no caching anything in these registers

+ “memory” says to flush all registers

Ensures that compiler generates code for all writes to
memory before a given operation

CPU Barriers

Advanced topic: Don’'t need details

Basic 1dea: In some cases, CPU can issue loads and
stores out of program order (optimize perf)

Subject to many constraints on x86 in practice

In some cases, a “fence” instruction 1s required to ensure
that pending loads/stores happen before the CPU moves
forward

Rarely needed except in device drivers and lock-free data
structures

Configuration

4+ Where does all of this come from?

Who sets up port mapping and I/O memory mappings?

Who maps device interrupts onto IRQ lines?

+ Generally, the BIOS

Sometimes constrained by device limitations
Older devices hard-coded IRQs
Older devices may only have a 16-bit chip

+ Can only access lower memory addresses

ISA memory hole

+ Recall the “memory hole” from lab 2?

640 KB - 1 MB
+ Required by the old ISA bus standard for I/O mappings

No one in the 80s could fathom > 640 KB of RAM

Devices sometimes hard-coded assumptions that they
would be 1n this range

Generally reserved on x86 systems (like JOS)

Strong incentive to save these addresses when possible

New hotness: PCI

+ Hard-coding things 1s bad
Willing to pay for flexibility in mapping devices to IRQs
and memory regions

+ Guessing what device you have 1s bad

On some devices, you had to do something to create an
interrupt, and see what fired on the CPU to figure out

what IRQ you had

Need a standard interface to query configurations

More flexibility

+ PCI addressing (both memory and I/0 ports) are
dynamically configured

Generally by the BIOS
But could be remapped by the kernel

+ Configuration space

256 bytes per device (4k per device in PCle)
Standard layout per device, including unique 1D

Big win: standard way to figure out my hardware, what to
load, etc.

PCI Configuration Layout

From device driver book
L X ' X

0x0 Ox1 O0x2 0x3 O0x4 O0x5 O0x6 O0x7 O0x8 0x9 Oxa Oxb Oxc Oxd Oxe 0xf

Status Rie:;s-
Reg.
9 ID

Device Command
D Reg.

Vendor

Class Code Cache (Latency | Header
0x00 ID

Line | Timer

= Base Base Base Base ==
o — 0x10 Address 0 Address 1 Address 2 Address 3 —
Base Base CardBus Subsytem Subsytem
0x20 Address 4 Address 5 CIS pointer Vendor ID Device ID

IRQ

Reserved Line i

Pin

Expansion ROM Min_Gnt | Max_ Lat

0x30 Base Address

I - Required Register

- Optional Register

Figure 12-2. The standardized PCI configuration registers

PCI Overview

+ Most desktop systems have 2+ PCI buses

< Joined by a bridge device

— < Forms a tree structure (bridges have children)

£hi]

oegeo

From Linux Device Drivers

PCI Layout

- i =

C oz § e
: :ﬁﬁm : :ﬁﬁm
- [t §
o | oo

- [ooné

3
2
&
S IRiEE HE
2 [ni § U lgé
= oo § [oooé
~ 000 §: 00O
< |
3
2
&
&
- M
] :D_u m.. M
% [= E|
3 3 T
S

Figure 12-1. Layout of a typical PCI system

PCI Addressing

+ Each peripheral listed by:

Bus Number (up to 256 per domain or host)

+ A large system can have multiple domains
Device Number (32 per bus)

Function Number (8 per device)

+ Function, as in type of device, not a subroutine

+ E.g., Video capture card may have one audio function and
one video function

+ Devices addressed by a 16 bit number

PCI Interrupts

+ Each PCI slot has 4 interrupt pins

+ Device does not worry about how those are mapped to
IRQ lines on the CPU
An APIC or other intermediate chip does this mapping
+ Bonus: flexibility!

Sharing limited IRQ lines 1s a hassle. Why?
+ Trap handler must demultiplex interrupts

Being able to “load balance” the IRQs is useful

Direct Memory Access
(DMA)

+ Simple memory read/write model bounces all I/0
through the CPU

Fine for small data, totally awful for huge data

+ Idea: just write where you want data to go (or come
from) to device

Let device do bulk data transfers into memory without
CPU intervention

Interrupt CPU on I/0 completion (asynchronous)

DMA Buffers

+ DMA buffers must be physically contiguous
+ Devices do not go through page tables

+ Some buses (SBus) can use virtual addresses; most (PCI)
use physical (avoid page translation overheads)

Ring buffers

Many devices pre-allocate a “ring” of buffers

Think network card

Device writes into ring; CPU reads behind

If ring 1s well-sized to the load:

No dynamic buffer allocation
No stalls

Trade-off between device stalls (or dropped packets) and
memory overheads

IOMMU

+ It 1s a pain to allocate physically contiguous regions
+ Idea: “virtual addresses” for devices

We can take random physical pages and make them look
contiguous to the device

Called “Bus address” for clarity
+ New to the x86 (called VT-d)

Until very recently, x86 kernels just suffered

A note on memory
protection

+ If I can write to a network card’s control register and tell
it where to write the next packet

What if I give it an address used for something else?
+ Like another process’s address space

Nothing stops this

+ DMA privilege effectively equals privilege to write to any
address in physical memory!

4

Why does x86 suddenly
care about IOMMUSs?

Virtualization! (VT-d)
Scenario: system with 4 NICs, 4 VMs

Without IOMMU: Hypervisor must mediate all network
traffic

With IOMMU: Each VM can have a different virtual bus
address space

Looks like a single NIC; can only 1ssue DMAs for its own
memory (not other VM’s memory)

No Hypervisor mediation needed!

VT-d Limitations

+ IOMMU device restrictions are all-or-nothing

Can’t share a network card
Although some devices may fix this too

+ VT-d 1s only for devices on the PCI-Express bus

Usually just graphics and high-end network cards

Legacy PCI devices are behind a bridge
+ All-or-nothing for an entire bridge

Similarly, no per-disk access control

+ All-or-nothing for disk controller (which multiplexes disks)

Summary

+ How to access devices: ports or memory
+ Issues with CPU optimizations, timing delays, etc.
+ Overview of PCI bus

+ Overview of DMA and protection 1ssues

IOMMU and use for virtualization

