it 7 by N
gL - 4 VAT, VRl \ 5Bl AN
. " 3l R RS, ) / St il
1 ’ , s f—' :.,‘ ; “'{‘ ‘)l
o S 1
J o & e P, oy
. st -* e
3 P' !'-‘. \ -y N s 32 b - »a Lr
I ‘ \ L - A.\‘ - i W ;. g ;_
f ¢ P al ; ' . ae ] b
7 ; e A\ - : 3 ' . . -~
' 3 . W : — e R TV
\ - < - . =% A u 4 LY .1
‘ b m i “ b e L= V. ~ e . e - o
| 1 U ¢ S o i )
- 2 ' o 1 e YRR,
> 9 ! B "‘ -y = b - 5‘1‘:‘}:_3’ : -
- — 1 " o ,"c
b L Y

En

crypted File Systems

L

‘UB




Goals

Protect confidentiality of data at rest (1.e., on disk)

Even if the media is lost or stolen

Protecting confidentiality of in-memory data much harder

Continue using file system features without losing
confidentiality

Example: Backup
Low overheads (space and CPU)

Change keys and perhaps different keys for different data



Two major approaches

> X

+ Block device encryption

VES

- $

+ Transparently encrypt
entire partition/disk
below the file system

exta + Linux: dm-crypt
Windows: BitLocker

. + Mac: FileVault 2
Generic block

= device =

—




Block encryption intuition

+ File system is created on a virtual block device
4+ Low-level read of virtual block device:

FS requests a block be read into page cache page X
Map to block(s) on real device

Request that blocks be read into a temporary page Y
Decrypt page X into page X

Return to file system

+ Similarly, writes encrypt pages before sending to disk



Two major approaches

o9 *ogeo

+ File System encryption

VES
+ Encrypt data between

VFS/Buffer cache and
low-level file system

Encrypted FS
ext4

+ Linux: eCryptFS
<+ Windows: EFS
<+ Mac: FileVault 1

Generic block
device




File-based intuition

+ Idea: Mount a layered file system over a real one
+ Application writes encrypted file ‘foo’

+ Encrypted FS opens real file foo

Stores some crypto metadata (like the cipher used) at the
front

Encrypts pages in page cache, transparently writes at an
offset



File-based intuition

<+ Read of file ‘bar’

Encrypted FS asks real FS for file ‘bar’

Uses metadata + secret key to decrypt

Stores decrypted pages in page cache
+ Challenges:

Managing private keys

Enforcing read protection on decrypted data in page cache



Pros/Cons of disk
encryption

<+ Pros:

Hides directory structure, used space, etc
4+ Metadata matters!
Can put any file system on top of it

<+ Cons:

Everything encrypted with one key

+ Encryption provides no confidentiality between users on a
shared system

Data must be re-encrypted before send on network
Encryption overhead for public data (like /etc/hostname)



Vs. FS encryption

<+ Pros:

Per-user (or per directory or file) encryption
Only encrypt truly secret data

Possibly send an encrypted file across network; use key (sent
separately!) to decrypt on remote host

<+ Cons:

Harder to hide/obfuscate directory structure and metadata
More keys to manage

Possibly easier to steal keys (debatable---harder to use TPMs)



Challenges

+ Key management

+ Read protection of live data

TN

4 Swapping

-

+ Booting the OS




Key management

+ Or, where do we keep the secret key?
+ Not 1n the file system!

There 1s a bootstrapping problem here

<+ Ideas?



Trusted Platform Module

+ New hardware extension — common on PCs 1n last few years

Either on motherboard or in CPU chip itself
+ Provides two useful features:

+ Measured Execution: Basically, checks that the booted code
(BIOS, bootloader, OS) match a given hash

Useful to detect tampering with your software

+ Sealed Storage: Store a very small amount of data in non-
volatile memory in the TPM chip

Only accessible from code with hash that wrote it



TPM Idea

+ Store the private key for the file system 1n the TPM’s
sealed storage

+ Only the trusted BIOS/bootloader/OS can access the
decryption key

The drive alone gets you nothing!

Tampering with the OS 1mage (on disk) to dump the disk
contents gets you nothing!



Small problem

+ Motherboard or CPU dies, taking TPM with it
+ How to decrypt your files then?

BitLocker: As part of initialization, allow user to print a
page with the decryption key. Put this in a safe place (not
laptop bag)



Key management in FS-
level encryption

Each user has a key chain of decryption keys

Kernel is trusted with these keys

On-disk, keychain is encrypted with a master key

Master key is protected with a passphrase

That just happens to be the logon credentials

So, with a user’s passphrase, we can decrypt the master
key for her home directory, then decrypt the keyring,
then the home directory



Challenge 2

The unencrypted data in the page cache needs to be
protected

If I encrypt my home directory, but make it world
readable, any user on the system can still read my home
directory!

Encryption 1s no substitute for access control!



Swapping

Care must be taken to prevent swapping of unencrypted data

Or keys!

If part of the file system/key management 1s in a user daemon,
unencrypted keys can be swapped

One strategy: Swap to an encrypted disk

Another strategy: Give the encrypted file system hooks to re-
encrypt data before it 1s written out to disk

Or put the swap file on the encrypted FS

Subtle issue



Challenge 3: Booting

You can’t boot an encrypted kernel

Decryption facilities usually need a booted kernel to
work

Big win for FS encryption: Don’t encrypt files needed for
boot

Disk encryption: Usually puts files needed for boot on a
separate (unencrypted) partition



Summary

+ Two main types of encrypted storage:

Block and file system encryption

+ Understand pros and cons of each

+ Understand key challenges:

Key management
Swapping
Booting



