
5/10/16	

1	

Encrypted File Systems
Don Porter

CSE 506

Goals

ò  Protect confidentiality of data at rest (i.e., on disk)

ò  Even if the media is lost or stolen

ò  Protecting confidentiality of in-memory data much harder

ò  Continue using file system features without losing
confidentiality

ò  Example: Backup

ò  Low overheads (space and CPU)

ò  Change keys and perhaps different keys for different data

Two major approaches

VFS

ext4

Encrypted block
device

Generic block
device

ò  Block device encryption

ò  Transparently encrypt
entire partition/disk
below the file system

ò  Linux: dm-crypt

ò  Windows: BitLocker

ò  Mac: FileVault 2

Block encryption intuition

ò  File system is created on a virtual block device

ò  Low-level read of virtual block device:

ò  FS requests a block be read into page cache page X

ò  Map to block(s) on real device

ò  Request that blocks be read into a temporary page Y

ò  Decrypt page X into page X

ò  Return to file system

ò  Similarly, writes encrypt pages before sending to disk

Two major approaches

VFS

Encrypted FS

ext4

Generic block
device

ò  File System encryption

ò  Encrypt data between
VFS/Buffer cache and
low-level file system

ò  Linux: eCryptFS

ò  Windows: EFS

ò  Mac: FileVault 1

File-based intuition

ò  Idea: Mount a layered file system over a real one

ò  Application writes encrypted file ‘foo’

ò  Encrypted FS opens real file foo

ò  Stores some crypto metadata (like the cipher used) at the
front

ò  Encrypts pages in page cache, transparently writes at an
offset

5/10/16	

2	

File-based intuition

ò  Read of file ‘bar’

ò  Encrypted FS asks real FS for file ‘bar’

ò  Uses metadata + secret key to decrypt

ò  Stores decrypted pages in page cache

ò  Challenges:

ò  Managing private keys

ò  Enforcing read protection on decrypted data in page cache

Pros/Cons of disk
encryption

ò  Pros:

ò  Hides directory structure, used space, etc
ò  Metadata matters!

ò  Can put any file system on top of it

ò  Cons:

ò  Everything encrypted with one key

ò  Encryption provides no confidentiality between users on a
shared system

ò  Data must be re-encrypted before send on network

ò  Encryption overhead for public data (like /etc/hostname)

Vs. FS encryption

ò  Pros:

ò  Per-user (or per directory or file) encryption

ò  Only encrypt truly secret data

ò  Possibly send an encrypted file across network; use key (sent
separately!) to decrypt on remote host

ò  Cons:

ò  Harder to hide/obfuscate directory structure and metadata

ò  More keys to manage

ò  Possibly easier to steal keys (debatable---harder to use TPMs)

Challenges

ò  Key management

ò  Read protection of live data

ò  Swapping

ò  Booting the OS

Key management

ò  Or, where do we keep the secret key?

ò  Not in the file system!

ò  There is a bootstrapping problem here

ò  Ideas?

Trusted Platform Module

ò  New hardware extension – common on PCs in last few years

ò  Either on motherboard or in CPU chip itself

ò  Provides two useful features:

ò  Measured Execution: Basically, checks that the booted code
(BIOS, bootloader, OS) match a given hash

ò  Useful to detect tampering with your software

ò  Sealed Storage: Store a very small amount of data in non-
volatile memory in the TPM chip

ò  Only accessible from code with hash that wrote it

5/10/16	

3	

TPM Idea

ò  Store the private key for the file system in the TPM’s
sealed storage

ò  Only the trusted BIOS/bootloader/OS can access the
decryption key

ò  The drive alone gets you nothing!

ò  Tampering with the OS image (on disk) to dump the disk
contents gets you nothing!

Small problem

ò  Motherboard or CPU dies, taking TPM with it

ò  How to decrypt your files then?

ò  BitLocker: As part of initialization, allow user to print a
page with the decryption key. Put this in a safe place (not
laptop bag)

Key management in FS-
level encryption

ò  Each user has a key chain of decryption keys

ò  Kernel is trusted with these keys

ò  On-disk, keychain is encrypted with a master key

ò  Master key is protected with a passphrase

ò  That just happens to be the logon credentials

ò  So, with a user’s passphrase, we can decrypt the master
key for her home directory, then decrypt the keyring,
then the home directory

Challenge 2

ò  The unencrypted data in the page cache needs to be
protected

ò  If I encrypt my home directory, but make it world
readable, any user on the system can still read my home
directory!

ò  Encryption is no substitute for access control!

Swapping

ò  Care must be taken to prevent swapping of unencrypted data

ò  Or keys!

ò  If part of the file system/key management is in a user daemon,
unencrypted keys can be swapped

ò  One strategy: Swap to an encrypted disk

ò  Another strategy: Give the encrypted file system hooks to re-
encrypt data before it is written out to disk

ò  Or put the swap file on the encrypted FS

ò  Subtle issue

Challenge 3: Booting

ò  You can’t boot an encrypted kernel

ò  Decryption facilities usually need a booted kernel to
work

ò  Big win for FS encryption: Don’t encrypt files needed for
boot

ò  Disk encryption: Usually puts files needed for boot on a
separate (unencrypted) partition

5/10/16	

4	

Summary

ò  Two main types of encrypted storage:

ò  Block and file system encryption

ò  Understand pros and cons of each

ò  Understand key challenges:

ò  Key management

ò  Swapping

ò  Booting

