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Difficult	topic	
•  Memory	consistency	models	are	difficult	to	
understand	
–  Knowing	when	and	how	to	use	memory	barriers	in	your	
programs	takes	a	long	Jme	to	master	

•  I	read	the	long	version	of	this	paper	about	once	a	
year	
–  Started	in	graduate	architecture,	sJll	mastering	this	

•  Even	if	you	can’t	master	this	material,	it	is	worth	
conveying	some	intuiJons	and	geNng	you	started	on	
the	path	
– MulJ-core	programming	is	increasingly	common	
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Background	
•  In	the	90s,	people	were	figuring	out	how	to	build	and	
program	shared	memory	mulJ-processors	

•  Several	hardware	and	compiler	opJmizaJons	that	
worked	well	on	single-CPU	systems	were	causing	
“heisen-bugs”	in	correct	parallel	code	
–  Disabling	all	opJmizaJons	made	this	code	correct,	but	
slow	

•  Various	consistency	models	strike	different	balances	
between	opJmizaJon	and	programmability	
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Simple	example	
/*	Pre	condiJon:	flag	=	0	*/	
x	=	a	+	b	
flag	=	1	

a	isn’t	in	the	cache	yet.
(or	ALU	is	busy,	etc)	

This	line	is	independent	of	the	one	above.		
Execute	first,	since	result	is	idenJcal	
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Extended	to	mulJ-processors	

/*	Pre	condiJon:	flag	=	0	*/	
Thread	1	
x	=	a	+	b	
flag	=	1	

	

Thread	2	

while	(	!	flag	)	{	1;	}	

val	=	x	

flag	is	acJng	as	a	barrier	to	
synchronize	read	of	x	ager	x	

was	wrihen	
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DisJncJon	
•  Compiler/CPU	can	figure	out	when	instrucJons	can	
be	safely	reordered	within	a	given	thread	

•  Hard	to	figure	out	when	the	order	is	meaningful	to	
coordinate	with	other	threads	

•  If	you	want	opJmizaJons	(and	you	do),	programmer	
MUST	give	hardware	and	compiler	some	hints	
–  Hard	to	design	hints	that	average	programmer	can	
successfully	give	the	hardware	
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DefiniJons	
•  Cache	coherence:	The	protocol	by	which	writes	to	
one	cache	invalidate	or	update	other	caches	

•  Memory	consistency	model:	How	are	updates	to	
memory	published	from	one	CPU	to	another	
–  Reordering	between	CPU	and	cache/memory?	
–  Are	cache	updates/invalidaJons	delivered	atomically?	

•  Coherence	protocol	detail	that	impacts	consistency	

•  DisJncJon	between	coherence	and	consistency	
muddled		



CSE	506:	Opera.ng	Systems	

IntuiJon	
•  On	a	bus-based	mulJ-processor	system	(nearly	all	
current	x86	CPUs),	a	write	to	the	cache	immediately	
invalidates	other	caches	
– Making	the	write	visible	to	other	CPUs	

•  But,	the	update	could	spend	some	Jme	in	a	write	
buffer	or	register	on	the	CPU	

•  If	a	later	write	goes	to	the	cache	first,	these	will	
become	visible	to	another	CPU	out	of	program	order	
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SequenJal	Consistency	
•  Simplest	possible	model	
•  Every	program	instrucJon	is	executed	in	order	
–  No	buffered	memory	writes	

•  Only	one	CPU	writes	to	memory	at	a	Jme	
–  Given	a	write	to	address	x,	all	cached	values	of	x	are	
invalidated	before	any	CPU	can	write	anything	else	

•  Simple	to	reason	about	
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SequenJal	is	too	slow	
•  CPUs	want	to	pipeline	instrucJons	
–  Hide	high	latency	instrucJons	

•  SequenJal	consistency	prevents	these	opJmizaJons	
•  And	these	opJmizaJons	are	harmless	in	the	common	
case	
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Relaxed	consistency	
•  If	the	common	case	is	that	reordering	is	safe,	make	
the	programmer	tell	the	CPU	when	reordering	is	
unsafe	
–  Details	of	the	model	specify	what	can	be	reordered	
– Many	different	proposed	models	

•  Barrier	(or	fence):	common	consistency	abstracJon	
–  Every	memory	access	before	this	barrier	must	be	visible	to	
other	CPUs	before	any	memory	access	ager	the	barrier	

–  Confusing	to	use	in	pracJce	
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Total	Store	Order	(TSO)	
•  Model	adopted	in	nearly	all	x86	CPUs	
•  All	stores	leave	the	CPU	in	program	order	
•  CPU	may	load	“ahead”	of	an	unrelated	store	
–  Ex:	x	=	1;	y	=	z;	
–  CPU	may	load	z	from	memory	before	x	is	stored	
–  CPU	may	not	reorder	load	and	store	of	same	variable	

•  Atomic	instrucJons	are	treated	like	a	barrier	
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TSO	benefits	
•  Since	nearly	all	locks	involve	an	atomic	write,	the	
CPU	will	never	reorder	a	criJcal	region	with	a	lock	
–  If	you	use	locks,	you	rarely	need	to	worry	about	
consistency	issues	

•  When	do	you	worry	about	memory	consistency?	
–  Custom	synchronizaJon	/	lock-free	data	structures	
–  Device	drivers	
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5a	Example	

/*	Pre	condiJon:	A=	flag1	=	flag2	=	0	*/	
	

Thread	1	

flag1	=	1	

A	=	1	

Register1	=	A	

Register2	=	flag2	

	
	

Thread	2	

flag2	=	1	

A	=	2	

Register3	=		A	

Register4	=	flag1	

Register	1	=	1,	R2	=	0,	R3	=	2,	R4	=	0	

Both	CPUs	forward	
write	of	A	internally	
before	globally	

visible	

Reorder	
Load	of	R2,	
R4	ahead	of	

stores	
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5a	Example	+		barriers	
/*	Pre	condiJon:	A=	flag1	=	flag2	=	0	*/	

	
Thread	1	
flag1	=	1	
A	=	1	
barrier	
Register1	=	A	
Register2	=	flag2	
	
	

Thread	2	
flag2	=	1	
A	=	2	
barrier	
Register3	=		A	
Register4	=	flag1	
	A	=	2	and	R2	=	0	or	A	=	1	and	R4	=	0;	R2	&	R4	!=	0	

Flag	writes	must	
be	globally	

visible	before	A	
is	wrihen	(TSO)	Store	A	must	be	

visible	before	
flag	reads	

Must	be	a	
sequenJal	
ordering	of	
store	A’s	



CSE	506:	Opera.ng	Systems	

5a	Example:	order	1	
/*	Pre	condiJon:	A=	flag1	=	flag2	=	0	*/	

	
Thread	1	
flag1	=	1	
A	=	1	(1)	
barrier	
Register1	=	A	
Register2	=	flag2	(2)	
	
	

Thread	2	
flag2	=	1	
A	=	2		(3)	
barrier	
Register3	=		A	
Register4	=	flag1	

A	=	2	and	R2	=	0	or	A	=	1	and	R4	=	0;	R2	&	R4	!=	0	
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5a	Example:	order	2	
/*	Pre	condiJon:	A=	flag1	=	flag2	=	0	*/	

	
Thread	1	
flag1	=	1	
A	=	1	(3)	
barrier	
Register1	=	A	
Register2	=	flag2		
	
	

Thread	2	
flag2	=	1	
A	=	2		(1)	
barrier	
Register3	=		A	
Register4	=	flag1	(2)		

A	=	2	and	R2	=	0	or	A	=	1	and	R4	=	0;	R2	&	R4	!=	0	
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Summary	
•  IdenJfying	where	to	put	memory	barriers	is	hard	
–  Takes	a	lot	of	pracJce	and	careful	thought	
–  Looks	easy	unJl	you	try	it	alone	

•  But,	CPUs	would	be	super-slow	on	sequenJal	
consistency	

•  Understand:	Why	relaxed	consistency?		What	is	TSO?	
Roughly	when	do	developers	need	barriers?	

•  Advice:	Take	grad	architecture;	read	this	paper	
yearly	


