
CSE	506:	Opera.ng	Systems	

Memory	Consistency	
	

Don	Porter	

1	



CSE	506:	Opera.ng	Systems	

Logical	Diagram	

Memory		
Management	

CPU	
Scheduler	

User	

Kernel	

Hardware	

Binary	
Formats	

Consistency	

System	Calls	

Interrupts	 Disk	 Net	

RCU	 File	System	

Device	
Drivers	

Networking	 Sync	

Memory	
Allocators	 Threads	

Today’s	Lecture	
Memory	

Consistency	



CSE	506:	Opera.ng	Systems	

Difficult	topic	
•  Memory	consistency	models	are	difficult	to	
understand	
–  Knowing	when	and	how	to	use	memory	barriers	in	your	
programs	takes	a	long	Jme	to	master	

•  I	read	the	long	version	of	this	paper	about	once	a	
year	
–  Started	in	graduate	architecture,	sJll	mastering	this	

•  Even	if	you	can’t	master	this	material,	it	is	worth	
conveying	some	intuiJons	and	geNng	you	started	on	
the	path	
– MulJ-core	programming	is	increasingly	common	



CSE	506:	Opera.ng	Systems	

Background	
•  In	the	90s,	people	were	figuring	out	how	to	build	and	
program	shared	memory	mulJ-processors	

•  Several	hardware	and	compiler	opJmizaJons	that	
worked	well	on	single-CPU	systems	were	causing	
“heisen-bugs”	in	correct	parallel	code	
–  Disabling	all	opJmizaJons	made	this	code	correct,	but	
slow	

•  Various	consistency	models	strike	different	balances	
between	opJmizaJon	and	programmability	



CSE	506:	Opera.ng	Systems	

Simple	example	
/*	Pre	condiJon:	flag	=	0	*/	
x	=	a	+	b	
flag	=	1	

a	isn’t	in	the	cache	yet.
(or	ALU	is	busy,	etc)	

This	line	is	independent	of	the	one	above.		
Execute	first,	since	result	is	idenJcal	



CSE	506:	Opera.ng	Systems	

Extended	to	mulJ-processors	

/*	Pre	condiJon:	flag	=	0	*/	
Thread	1	
x	=	a	+	b	
flag	=	1	

	

Thread	2	

while	(	!	flag	)	{	1;	}	

val	=	x	

flag	is	acJng	as	a	barrier	to	
synchronize	read	of	x	ager	x	

was	wrihen	



CSE	506:	Opera.ng	Systems	

DisJncJon	
•  Compiler/CPU	can	figure	out	when	instrucJons	can	
be	safely	reordered	within	a	given	thread	

•  Hard	to	figure	out	when	the	order	is	meaningful	to	
coordinate	with	other	threads	

•  If	you	want	opJmizaJons	(and	you	do),	programmer	
MUST	give	hardware	and	compiler	some	hints	
–  Hard	to	design	hints	that	average	programmer	can	
successfully	give	the	hardware	



CSE	506:	Opera.ng	Systems	

DefiniJons	
•  Cache	coherence:	The	protocol	by	which	writes	to	
one	cache	invalidate	or	update	other	caches	

•  Memory	consistency	model:	How	are	updates	to	
memory	published	from	one	CPU	to	another	
–  Reordering	between	CPU	and	cache/memory?	
–  Are	cache	updates/invalidaJons	delivered	atomically?	

•  Coherence	protocol	detail	that	impacts	consistency	

•  DisJncJon	between	coherence	and	consistency	
muddled		



CSE	506:	Opera.ng	Systems	

IntuiJon	
•  On	a	bus-based	mulJ-processor	system	(nearly	all	
current	x86	CPUs),	a	write	to	the	cache	immediately	
invalidates	other	caches	
– Making	the	write	visible	to	other	CPUs	

•  But,	the	update	could	spend	some	Jme	in	a	write	
buffer	or	register	on	the	CPU	

•  If	a	later	write	goes	to	the	cache	first,	these	will	
become	visible	to	another	CPU	out	of	program	order	



CSE	506:	Opera.ng	Systems	

SequenJal	Consistency	
•  Simplest	possible	model	
•  Every	program	instrucJon	is	executed	in	order	
–  No	buffered	memory	writes	

•  Only	one	CPU	writes	to	memory	at	a	Jme	
–  Given	a	write	to	address	x,	all	cached	values	of	x	are	
invalidated	before	any	CPU	can	write	anything	else	

•  Simple	to	reason	about	



CSE	506:	Opera.ng	Systems	

SequenJal	is	too	slow	
•  CPUs	want	to	pipeline	instrucJons	
–  Hide	high	latency	instrucJons	

•  SequenJal	consistency	prevents	these	opJmizaJons	
•  And	these	opJmizaJons	are	harmless	in	the	common	
case	



CSE	506:	Opera.ng	Systems	

Relaxed	consistency	
•  If	the	common	case	is	that	reordering	is	safe,	make	
the	programmer	tell	the	CPU	when	reordering	is	
unsafe	
–  Details	of	the	model	specify	what	can	be	reordered	
– Many	different	proposed	models	

•  Barrier	(or	fence):	common	consistency	abstracJon	
–  Every	memory	access	before	this	barrier	must	be	visible	to	
other	CPUs	before	any	memory	access	ager	the	barrier	

–  Confusing	to	use	in	pracJce	



CSE	506:	Opera.ng	Systems	

Total	Store	Order	(TSO)	
•  Model	adopted	in	nearly	all	x86	CPUs	
•  All	stores	leave	the	CPU	in	program	order	
•  CPU	may	load	“ahead”	of	an	unrelated	store	
–  Ex:	x	=	1;	y	=	z;	
–  CPU	may	load	z	from	memory	before	x	is	stored	
–  CPU	may	not	reorder	load	and	store	of	same	variable	

•  Atomic	instrucJons	are	treated	like	a	barrier	



CSE	506:	Opera.ng	Systems	

TSO	benefits	
•  Since	nearly	all	locks	involve	an	atomic	write,	the	
CPU	will	never	reorder	a	criJcal	region	with	a	lock	
–  If	you	use	locks,	you	rarely	need	to	worry	about	
consistency	issues	

•  When	do	you	worry	about	memory	consistency?	
–  Custom	synchronizaJon	/	lock-free	data	structures	
–  Device	drivers	



CSE	506:	Opera.ng	Systems	

5a	Example	

/*	Pre	condiJon:	A=	flag1	=	flag2	=	0	*/	
	

Thread	1	

flag1	=	1	

A	=	1	

Register1	=	A	

Register2	=	flag2	

	
	

Thread	2	

flag2	=	1	

A	=	2	

Register3	=		A	

Register4	=	flag1	

Register	1	=	1,	R2	=	0,	R3	=	2,	R4	=	0	

Both	CPUs	forward	
write	of	A	internally	
before	globally	

visible	

Reorder	
Load	of	R2,	
R4	ahead	of	

stores	



CSE	506:	Opera.ng	Systems	

5a	Example	+		barriers	
/*	Pre	condiJon:	A=	flag1	=	flag2	=	0	*/	

	
Thread	1	
flag1	=	1	
A	=	1	
barrier	
Register1	=	A	
Register2	=	flag2	
	
	

Thread	2	
flag2	=	1	
A	=	2	
barrier	
Register3	=		A	
Register4	=	flag1	
	A	=	2	and	R2	=	0	or	A	=	1	and	R4	=	0;	R2	&	R4	!=	0	

Flag	writes	must	
be	globally	

visible	before	A	
is	wrihen	(TSO)	Store	A	must	be	

visible	before	
flag	reads	

Must	be	a	
sequenJal	
ordering	of	
store	A’s	



CSE	506:	Opera.ng	Systems	

5a	Example:	order	1	
/*	Pre	condiJon:	A=	flag1	=	flag2	=	0	*/	

	
Thread	1	
flag1	=	1	
A	=	1	(1)	
barrier	
Register1	=	A	
Register2	=	flag2	(2)	
	
	

Thread	2	
flag2	=	1	
A	=	2		(3)	
barrier	
Register3	=		A	
Register4	=	flag1	

A	=	2	and	R2	=	0	or	A	=	1	and	R4	=	0;	R2	&	R4	!=	0	



CSE	506:	Opera.ng	Systems	

5a	Example:	order	2	
/*	Pre	condiJon:	A=	flag1	=	flag2	=	0	*/	

	
Thread	1	
flag1	=	1	
A	=	1	(3)	
barrier	
Register1	=	A	
Register2	=	flag2		
	
	

Thread	2	
flag2	=	1	
A	=	2		(1)	
barrier	
Register3	=		A	
Register4	=	flag1	(2)		

A	=	2	and	R2	=	0	or	A	=	1	and	R4	=	0;	R2	&	R4	!=	0	



CSE	506:	Opera.ng	Systems	

Summary	
•  IdenJfying	where	to	put	memory	barriers	is	hard	
–  Takes	a	lot	of	pracJce	and	careful	thought	
–  Looks	easy	unJl	you	try	it	alone	

•  But,	CPUs	would	be	super-slow	on	sequenJal	
consistency	

•  Understand:	Why	relaxed	consistency?		What	is	TSO?	
Roughly	when	do	developers	need	barriers?	

•  Advice:	Take	grad	architecture;	read	this	paper	
yearly	


