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Today’s Lecture 

Quick Recap 

ò  CPU Scheduling 

ò  Balance competing concerns with heuristics 

ò  What were some goals? 

ò  No perfect solution 

ò  Today: Block device scheduling 

ò  How different from the CPU? 

ò  Focus primarily on a traditional hard drive 

ò  Extend to new storage media 

Block device goals 

ò  Throughput 

ò  Latency 

ò  Safety – file system can be recovered after a crash 

ò  Fairness – surprisingly, very little attention is given to 
storage access fairness 

ò  Hard problem – solutions usually just prevent starvation 

ò  Disk quotas for space fairness 

Big Picture 

VFS 

Low-level FS (ext4, BTRFS, etc.) 
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OS Model of  a Block Dev. 

ò  Simple array of  blocks 

ò  Blocks are usually 512 or 4k bytes 
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Recall: Page Cache 
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Caching 

ò  Obviously, the number 1 trick in the OS designer’s 
toolbox is caching disk contents in RAM 

ò  Remember the page cache? 

ò  Latency – can be hidden by pre-reading data into RAM 

ò  And keeping any free RAM full of  disk contents 

ò  Doesn’t help synchronous reads (that miss in RAM cache) 
or synchronous writes 

Caching + throughput 

ò  Assume that most reads and writes to disk are 
asynchronous 

ò  Dirty data can be buffered and written at OS’s leisure 

ò  Most reads hit in RAM cache – most disk reads are read-
ahead optimizations 

ò  Key problem: How to optimally order pending disk I/O 
requests? 

ò  Hint: it isn’t first-come, first-served 

Another view of  the 
problem 

ò  Between page cache and disk, you have a queue of  
pending requests 

ò  Requests are a tuple of  (block #, read/write, buffer addr) 

ò  You can reorder these as you like to improve throughput 

ò  What reordering heuristic to use?  If  any? 

ò  Heuristic is called the IO Scheduler 

A simple disk model 

ò  Disks are slow.  Why? 

ò  Moving parts << circuits 

ò  Programming interface: simple array of  sectors (blocks) 

ò  Physical layout:  

ò  Concentric circular “tracks” of  blocks on a platter 

ò  E.g., sectors 0-9 on innermost track, 10-19 on next track, etc. 

ò  Disk arm moves between tracks 

ò  Platter rotates under disk head to align w/ requested sector 

Disk Model 
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Disk Model 
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Implications of  multiple 
platters 

ò  Blocks actually striped across platters 

ò  Example: 

ò  Sector 0 on platter 0 

ò  Sector 1 on platter 1 at same position 

ò  Sector 2 on platter 2, Sec. 3 on Plat. 3 also at same 
position 

ò  4 heads can read all 4 sectors simultaneously 

3 key latencies 

ò  I/O delay: time it takes to read/write a sector 

ò  Rotational delay: time the disk head waits for the platter 
to rotate desired sector under it 

ò  Note: disk rotates continuously at constant speed 

ò  Seek delay: time the disk arm takes to move to a different 
track 

Observations 

ò  Latency of  a given operation is a function of  current disk 
arm and platter position 

ò  Each request changes these values 

ò  Idea: build a model of  the disk 

ò  Maybe use delay values from measurement or manuals 

ò  Use simple math to evaluate latency of  each pending 
request 

ò  Greedy algorithm: always select lowest latency 
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Example formula 

ò  s = seek latency, in time/track 

ò  r = rotational latency, in time/sector 

ò  i = I/O latency, in seconds 

ò  Time = (Δtracks * s) + (Δsectors * r) + I 

ò  Note: Δsectors must factor in position after seek is 
finished.  Why? 

Problem with greedy? 

ò  “Far” requests will starve 

ò  Disk head may just hover around the “middle” tracks 

Elevator Algorithm 

ò  Require disk arm to move in continuous “sweeps” in and 
out 

ò  Reorder requests within a sweep 

ò  Ex: If  disk arm is moving “out,” reorder requests between 
the current track and the outside of  disk in ascending 
order (by block number) 

ò  A request for a sector the arm has already passed must be 
ordered after the outermost request, in descending order 

Elevator Algo, pt. 2 

ò  This approach prevents starvation 

ò  Sectors at “inside” or “outside” get service after a bounded time 

ò  Reasonably good throughput 

ò  Sort requests to minimize seek latency 

ò  Can get hit with rotational latency pathologies (How?) 

ò  Simple to code up! 

ò  Programming model hides low-level details; difficult to do fine-
grained optimizations in practice 

Pluggable Schedulers 

ò  Linux allows the disk scheduler to be replaced 

ò  Just like the CPU scheduler 

ò  Can choose a different heuristic that favors: 

ò  Fairness 

ò  Real-time constraints 

ò  Performance 

Complete Fairness Queue 
(CFQ) 

ò  Idea: Add a second layer of  queues (one per process) 

ò  Round-robin promote them to the “real” queue 

ò  Goal: Fairly distribute disk bandwidth among tasks 

ò  Problems? 

ò  Overall throughput likely reduced 

ò  Ping-pong disk head around 
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Deadline Scheduler 

ò  Associate expiration times with requests 

ò  As requests get close to expiration, make sure they are 
deployed 

ò  Constrains reordering to ensure some forward progress 

ò  Good for real-time applications 

Anticipatory Scheduler 

ò  Idea: Try to anticipate locality of  requests 

ò  If  process P tends to issue bursts of  requests for close disk 
blocks, 

ò  When you see a request from P, hold the request in the 
disk queue for a while 

ò  See if  more “nearby” requests come in 

ò  Then schedule all the requests at once 

ò  And coalesce adjacent requests 

Optimizations at  
Cross-purposes 

ò  The disk itself  does some optimizations: 

ò  Caching 

ò  Write requests can sit in a volatile cache for longer than 
expected  

ò  Reordering requests internally 

ò  Can’t assume that requests are serviced in-order 

ò  Dependent operations must wait until first finishes 

ò  Bad sectors can be remapped to “spares” 

ò  Problem: disk arm flailing on an old disk 

A note on safety 

ò  In Linux, and other OSes, the I/O scheduler can reorder 
requests arbitrarily 

ò  It is the file system’s job to keep unsafe I/O requests out 
of  the scheduling queues 

Dangerous I/Os 

ò  What can make an I/O request unsafe? 

ò  File system bookkeeping has invariants on disk 

ò  Example: Inodes point to file data blocks; data blocks are 
also marked as free in a bitmap 

ò  Updates must uphold these invariants 

ò  Ex: Write an update to the inode, then the bitmap 

ò  What if  the system crashes between writes? 

ò  Block can end up in two files!!! 

3 Simple Rules 
(Courtesy of  Ganger and McKusick, “Soft Updates” paper) 

ò  Never write a pointer to a structure until it has been initialized 

ò  Ex: Don’t write a directory entry to disk until the inode has 
been written to disk 

ò  Never reuse a resource before nullifying all pointers to it 

ò  Ex: Before re-allocating a block to a file, write an update to the 
inode that references it 

ò  Never reset the last pointer to a live resource before a new 
pointer has been set 

ò  Ex: Renaming a file – write the new directory entry before the 
old one (better 2 links than none) 
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A note on safety 

ò  It is the file system’s job to keep unsafe I/O requests out 
of  the scheduling queues 

ò  While these constraints are simple, enforcing them in the 
average file system is surprisingly difficult 

ò  Journaling helps by creating a log of  what you are in the 
middle of  doing, which can be replayed 

ò  (Simpler) Constraint: Journal updates must go to disk 
before FS updates 

Disks aren’t everything 

ò  Flash is increasing in popularity 

ò  Different types with slight variations (NAND, NOR, etc) 

ò  No moving parts – who cares about block ordering 
anymore? 

ò  Can only write to a block of  flash ~100k times 

ò  Can read as much as you want 

More in a Flash 

ò  Flash reads are generally fast, writes are more expensive 

ò  Prefetching has little benefit 

ò  Queuing optimizations can take longer than a read 

ò  New issue: wear leveling – need to evenly distribute 
writes 

ò  Flash devices usually have a custom, log-structured FS 

ò  Group random writes 

Even newer hotness 

ò  Byte-addressible, persistent RAMs (BPRAM) 

ò  Phase-Change Memory (PCM), Memristors, etc. 

ò  Splits the difference between RAM and flash: 

ò  Byte-granularity writes (vs. blocks) 

ò  Fast reads, slower, high-energy writes 

ò  Doesn’t need energy to hold state (DRAM refresh) 

ò  Wear an issue (bytes get stuck at last value) 

ò  Still in the lab, but getting close 

Important research topic 

ò  Most work on optimizing storage accessed is tailored to 
hard drives 

ò  These heuristics are not easily adapted to new media 

ò  Future systems will have a mix of  disks, flash, PRAM, 
DRAM 

ò  Does it even make sense to treat them all the same? 

Summary 

ò  Performance characteristics of  disks, flash, BPRAM 

ò  Disk scheduling heuristics 

ò  Safety constraints for file systems 


