Fall 2014:: CSE 506:: Section 2 (PhD) q\\\\ Stony Brook University

Network File System
(NFS)

Nima Honarmand
(Based on slides by Don Porter and Mike Ferdman)

S NN T, —
Fall 2014:: CSE 506:: Section 2 (PhD) q\\\\ Stony Brook University

Big Picture

CLIENT SERVER

System Calls

L

VNODE/VFS

l

System Calls

L

VNODE/VFS

N NS

PC Filesystem 4.2 Filesystem || NFS Filesystem

L

' RPC / XDR

m— RPC / XDR
Network

Floppy Disk \L T
A
From Sandberg et al., 1985

Server Routines

)

e IS S —
Fall 2014:: CSE 506:: Section 2 (PhD) q\\\\ Stony Brook University

Intuition and Challenges

Intuition:

* Translate VFS requests into remote procedure calls
to server
— Instead of translating them into disk accesses

Challenges:

» Server can crash or be disconnected

* Client can crash or be disconnected

* How to coordinate multiple clients on same file?
* Security

Fall 2014:: CSE 506:: Section 2 (PhD) q\\\\ Stony Brook University

Stateful vs. Stateless Protocols

 Stateful protocol: server keeps track of past requests
- I.e., state persist dCross requests on the server

 Stateless protocol: server does not keep track of past
requests

— Client should send all necessary state with a single request

* Challenge of stateful: Recovery from crash/disconnect

 Server side challenges:
— Knowing when a connection has failed (timeout)
— Tracking state that needs to be cleaned up on a failure

* Client side challenges:
— If server thinks we failed (timeout), must recreate server state

e IS S —
Fall 2014:: CSE 506:: Section 2 (PhD) q\\\\ Stony Brook University

Stateful vs. Stateless Protocols

* Drawbacks of stateless:
— May introduce more complicated messages
— And more messages in general

Fall 2014:: CSE 506:: Section 2 (PhD) q\\\\ Stony Brook University

NFS is Stateless

* Every request sends all needed info
— User credentials (for security checking)
— File handle and offset

* Each request matches a VFS operation
—e.g., lookup, read, write, unlink, stat
— there is no open or close among NFS operations

e Default NFS transport protocol (up to NFSv3) was
UDP.

Fall 2014:: CSE 506:: Section 2 (PhD) q\\\\ Stony Brook University

Challenge: Lost Request?

* Request sent to NFS server, no response received
— Did the message get lost in the network (UDP)?
— Did the server die?

— |s the server slow?

 Don’t want to do things twice
 Bad idea: write data at the end of a file twice

* |dea: Make all requests idempotent

— Requests have same effect when executed multiple times
* Ex: write() has an explicit offset, same effect if done twice

— Some requests not easy to make idempotent
* E.g., deleting a file

» Server keeps a cache of recent requests and ignores requests
found in the cache

Fall 2014:: CSE 506:: Section 2 (PhD) q\\\\ Stony Brook University

Challenge: inode Reuse

* Process A opens file ‘foo’
— Maps to inode 30

* Process B unlinks file ‘foo’
— On local system, OS holds reference to the inode alive

— NFS is stateless, server doesn’t know about open handle

* The file can be deleted and the inode reused
* Next request for inode 30 will go to the wrong file

* |dea: Generation Numbers
— If inode in NFS is recycled, generation number is incremented

— Client requests include an inode + generation number
* Enables detecting attempts to access an old inode

e IS S —
Fall 2014:: CSE 506:: Section 2 (PhD) q\\\\ Stony Brook University

Challenge: Security

* Local UID/GID passed as part of the call
— UIDs must match across systems
— Yellow pages (yp) service; evolved to NIS
— Replaced with LDAP or Active Directory

* Problem with “root”: root on one machine becomes
root everywhere

 Solution: root squashing — root (UID 0) mapped to
“nobody”

— Ineffective security
* Cansend any UID in the NFS packet
* With root access on NFS client, “su” to another user to get UID

e IS S —
Fall 2014:: CSE 506:: Section 2 (PhD) q\\\\ Stony Brook University

Challenge: File Locking

* Must have way to change file without interference

— Get a server-side lock
 What happens if the client dies?
* Lots of options (timeouts, etc), mostly bad
— Punted to a separate, optional locking service

e Such as Network Lock Manager (NLM)
e With ugly hacks and timeouts

Fall 2014:: CSE 506:: Section 2 (PhD) q\\\\ Stony Brook University

Challenge: Removal of Open Files

* Recall: Unix allows accessing deleted files if still open

— Reference in in-memory inode prevents cleanup
* Applications expect this behavior; how to deal with it in NFS?

* On client, check if file is open before removing it

— If yes, rename file instead of deleting it
 .nfs* filesin modern NFS

— When file is closed, delete temp file
* If client crashes, garbage file is left over ®

— Only works if the same client opens and then removes file

Fall 2014:: CSE 506:: Section 2 (PhD) q\\\\ Stony Brook University

Challenge: Time Synchronization

e Each CPU’s clock ticks at slightly different rates
— These clocks can drift over time

* Tools like ‘make’ use timestamps
— Clock drift can cause programs to misbehave

make[2] : warning: Clock skew detected.
Your build may be incomplete.

» Systems using NFS must have clocks synchronized

— Using external protocol like Network Time Protocol (NTP)

* Synchronization depends on unknown communication delay
* Very complex protocol but works pretty well in practice

Fall 2014:: CSE 506:: Section 2 (PhD) q\\\\ Stony Brook University

Challenge: Caches and Consistency

e Clients A and B have file in their cache

* Client A writes to the file
— Data stays in A’s cache
— Eventually flushed to the server

e Client B reads the file

— Does B see the old contents or the new file contents?

* Who tells B that the cache is stale?
» Server can tell, but only after A actually wrote/flushed the data

e IS S —
Fall 2014:: CSE 506:: Section 2 (PhD) q\\\\ Stony Brook University

Consistency/Performance Tradeoff

* Performance: cache always, write when convenient

— Other clients can see old data, or make conflicting
updates

* Consistency: write everything immediately

— And tell everyone who may have it cached

* Requires server to know the clients which cache the file
(stateful ?7?7?)

— Much more network traffic, lower performance

— Not good for the common case: accessing an unshared
file

Fall 2014:: CSE 506:: Section 2 (PhD) q\\\\ Stony Brook University

Close-to-Open Consistency

e NFS Model: Flush all writes on a close

* On open, check the cached version’s time stamp
— |If stale, invalidate the cache

— Makes sure you get the latest version on the server
when opening a file

Fall 2014:: CSE 506:: Section 2 (PhD) q\\\\ Stony Brook University

NFS Evolution

* The simple protocol was version 2

* Version 3 (1995):

— 64-bit file sizes and offsets (large file support)

— Bundle attributes with other requests to eliminate stat()
— Other optimizations

— Still widely used today

Fall 2014:: CSE 506:: Section 2 (PhD) q\\\\ Stony Brook University

NFSv4 (2000)

* Attempts to address many of the problems of v3
— Security (eliminate homogeneous UID assumptions)
— Performance

* Provides a stateful protocol

* pNFS — extensions for parallel distributed accesses

* Too advanced for its own good

— Much more complicated then v3
e Slow adoption

— Barely being phased in now
* With hacks that lose some of the features (looks more like v3)

