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Today’s Lecture 



Previous lectures 

ò  Basic VFS abstractions 

ò  Including data structures 

ò  And programming model (file system) 

ò  And APIs 

ò  Some system call examples 

ò  Walk through some system calls 

ò  Plus synchronization issues 



Today’s goal: Synthesis 

ò  Walk through two system calls in some detail 

ò  Open and read 

ò  Too much code to cover all FS system calls 



Quick review: dentry 

ò  What purpose does a dentry serve? 

ò  Essentially maps a path name to an inode 

ò  More in 2 slides on how to find a dentry 

ò  Dentries are cached in memory 

ò  Only “recently” accessed parts of  a directory are in 
memory; others may need to be read from disk 

ò  Dentries can be freed to reclaim memory (like pages) 



Dentry caching 

ò  3 Cases for a dentry: 

ò  In memory (exists) 

ò  Not in memory (doesn’t exist) 

ò  Not in memory (on disk/evicted for space or never used) 

ò  How to distinguish last 2 cases? 

ò  Case 2 can generate a lot of  needless disk traffic 

ò  “Negative dentry” – Dentry with a NULL inode pointer 



Dentry tracking 

ò  Dentries are stored in four data structures: 

ò  A hash table (for quick lookup) 

ò  A LRU list (for freeing cache space wisely) 

ò  A child list of  subdirectories (mainly for freeing) 

ò  An alias list (to do reverse mapping of  inode -> dentries) 

ò  Recall that many directories can map one inode 



Open summary 

ò  Key kernel tasks: 

ò  Map a human-readable path name to an inode 

ò  Check access permissions, from / to the file 

ò  Possibly create or truncate the file (O_CREAT, 
O_TRUNC) 

ò  Create a file descriptor  



Open arguments 

ò  int open(const char *path, int flags, int mode); 

ò  Path: file name 

ò  Flags: many (see manual page), include read/write perms 

ò  Mode: If  a file is created, what permissions should it have? 
(e.g., 0755) 

ò  Return value: File handle index (>= 0 on success)  

ò  Or (0 –errno) on failure 



Absolute vs. Relative 
Paths 

ò  Each process has a current root and working directory 

ò  Stored in current->fs-> (fs, pwd---respectively) 

ò  Specifically, these are dentry pointers (not strings) 

ò  Note that these are shared by threads 

ò  Why have a current root directory? 

ò  Some programs are ‘chroot jailed’ and should not be able 
to access anything outside of  the directory 



More on paths 

ò  An absolute path starts with the ‘/’ character 

ò  E.g., /home/porter/foo.txt, /lib/libc.so 

ò  A relative path starts with anything else: 

ò  E.g., vfs.pptx, ../../etc/apache2.conf  

ò  First character dictates where in the dcache to start 
searching for a path 



Search 

ò  Executes in a loop, starting with the root directory or the 
current working directory 

ò  Treats ‘/’ character in the path as a component delimiter 

ò  Each iteration looks up part of  the path 

ò  E.g., ‘/home/porter/foo’ would look up ‘home’, 
‘porter’, then ‘foo’, starting at / 



Detail (iteration 1) 

ò  For current dentry (/), dereference the inode 

ò  Check access permission (recall, mode is stored in inode) 

ò  Use a permission() function pointer associated with the 
inode – can be overridden by a security module (such as 
SeLinux, or AppArmor), or the file system 

ò  If  ok, look at next path component (/home) 



Detail (2) 

ò  Some special cases: 

ò  If  next component is a ‘.’, just skip to next component 

ò  If  next component is a ‘..’, try to move up to parent 

ò  Catch the special case where the current dentry is the 
process root directory and treat this as a no-op 

ò  If  not a ‘.’ or ‘..’: 

ò  Compute a hash value to find bucket in d_hash table 

ò  Hash is based on full path (e.g., /home/foo, not ‘foo’) 

ò  Search the d_hash bucket at this hash value 



Detail (3) 

ò  If  there isn’t a dentry in the hash bucket, calls the lookup() 
method on parent inode (provided by FS), to read the dentry 
from disk 

ò  Or the network, or kernel data structures… 

ò  If  found, check whether it is a symbolic link 

ò  If  so, call inode->readlink() (also provided by FS) to get the path 
stored in the symlink 

ò  Then continue next iteration 

ò  If  not a symlink, check if  it is a directory 

ò  If  not a directory and not last element, we have a bad path 



Iteration 2 

ò  We have dentry/inode for /home, now finding porter 

ò  Check permission in /home 

ò  Hash /home/porter, find dentry 

ò  Confirm not ‘.’, ‘..’, or a symlink 

ò  Confirm is a directory 

ò  Recur with dentry/inode for /home/porter, search for 
foo 



Symlink problems 

ò  What if  /home/porter/foo is a symlink to ‘foo’? 

ò  Kernel gets in an infinite loop 

ò  Can be more subtle: 

ò  foo -> bar 

ò  bar -> baz 

ò  baz -> foo 



Preventing infinite 
recursion 

ò  More simple heuristics 

ò  If  more than 40 symlinks resolved, quit with –ELOOP 

ò  If  more than 6 symlinks resolved in a row without a non-
symlink inode, quit with –ELOOP 

ò  Maybe add some special logic for obvious self-references 

ò  Can prevent execution of  a legitimate 41 symlink path 

ò  Generally considered reasonable 



Back to open() 

ò  Key tasks: 

ò  Map a human-readable path name to an inode 

ò  Check access permissions, from / to the file 

ò  Possibly create or truncate the file (O_CREAT, 
O_TRUNC) 

ò  Create a file descriptor  

ò  We’ve seen how steps 1 and 2 are done 



Creation 

ò  Handled as part of  search; treat last item specially 

ò  Usually, if  an item isn’t found, search returns an error 

ò  If  last item (foo) exists and O_EXCL flag set, fail 

ò  If  O_EXCL is not set, return existing dentry 

ò  If  it does not exist, call fs create method to make a new 
inode and dentry 

ò  This is then returned 



File descriptors 

ò  User-level file descriptors are an index into a process-
local table of  struct files 

ò  A struct file stores a dentry pointer, an offset into the file, 
and caches the access mode (read/write/both) 

ò  The table also tracks which entries are valid 

ò  Open marks a free table entry as ‘in use’ 

ò  If  full, create a new table 2x the size and copy old one 

ò  Allocates a new file struct and puts a pointer in table 



Truncation 

ò  The O_TRUNC flag causes the file to be truncated to 
zero bytes at the end of  opening 

ò  This is done with a routine that frees cached pages, 
updates inode size, and calls an FS-provided truncate() 
hook 

ò  This routine generally updates on-disk data, freeing stored 
blocks 



Open questions? 



Now on to read 

ò  int read(int fd, void *buf, size_t bytes); 

ò  fd: File descriptor index 

ò  buf: Buffer kernel writes the read data into 

ò  bytes: Number of  bytes requested 

ò  Returns: bytes read (if  >= 0), or –errno 



Simple steps 

ò  Translate int fd to a struct file (if  valid) 

ò  Check cached permissions in the file 

ò  Increase reference count 

ò  Validate that sizeof(buf) >= bytes requested 

ò  And that buf  is a valid address 

ò  Do read() routine associated with file (FS-specific) 

ò  Drop refcount, return bytes read 



Hard part: Getting data 

ò  In addition to an offset, the file structure caches a pointer 
to the address space associated with the file 

ò  Recall: this includes the radix tree of  in-memory pages 

ò  Search the radix tree for the appropriate page of  data 

ò  If  not found, or PG_uptodate flag not set, re-read from 
disk 

ò  If  found, copy into the user buffer (up to inode->i_size) 



Requesting a page read 

ò  First, the page must be locked 

ò  Atomically set a lock bit in the page descriptor 

ò  If  this fails, the process sleeps until page is unlocked 

ò  Once the page is locked, double-check that no one else 
has re-read from disk before locking the page 

ò  Also, check that no one has freed the page while we were 
waiting (by changing the mapping field) 

ò  Invoke the address_space->readpage() method (set by 
FS) 



Generic readpage 

ò  Recall that most disk blocks are 512 bytes, yet pages are 
4k 

ò  Block size stored in inode (blkbits) 

ò  Each file system provides a get_block() routine that gives 
the logical block number on disk 

ò  Check for edge cases (like a sparse file with missing 
blocks on disk) 



More readpage 

ò  If  the blocks are contiguous on disk, read entire page as a 
batch 

ò  If  not, read each block one at a time 

ò  These block requests are sent to the backing device I/O 
scheduler (recall lecture on I/O schedulers) 



After readpage 

ò  Mark the page accessed (for LRU reclaiming) 

ò  Unlock the page 

ò  Then copy the data, update file access time, advance file 
offset, etc. 



Copying data to user 

ò  Kernel needs to be sure that buffer is a valid address 

ò  How to do it? 

ò  Can walk appropriate page table entries 

ò  What could go wrong? 

ò  Concurrent munmap from another thread 

ò  Page might be lazy allocated by kernel 



Trick 

ò  What if  we don’t do all of  this validation? 

ò  Looks like kernel had a page fault 

ò  Usually REALLY BAD 

ò  Idea: set a kernel flag that says we are in copy_to_user 

ò  If  a page fault happens for a user address, don’t panic 

ò  Just handle demand faults 

ò  If  the page is really bad, write an error code into a register 
so that it breaks the write loop; check after return 



Benefits 

ò  This trick actually speeds up the common case (buf  is 
ok) 

ò  Avoids complexity of  handling weird race conditions 

ò  Still need to be sure that buf  address isn’t in the kernel 



Summary 

ò  Goal: Synthesize key VFS concepts, data structures, and 
optimizations with concrete examples 

ò  Understand key steps in open and read system calls 


