
Virtual File System
Don Porter

CSE 506

Logical Diagram

Memory
Management

CPU
Scheduler

User

Kernel

Hardware

Binary
Formats

Consistency

System Calls

Interrupts Disk Net

RCU File System

Device
Drivers

Networking Sync

Memory
Allocators Threads

Today’s Lecture

History

ò  Early OSes provided a single file system

ò  In general, system was pretty tailored to target hardware

ò  In the early 80s, people became interested in supporting
more than one file system type on a single system

ò  Any guesses why?

ò  Networked file systems – sharing parts of a file system
transparently across a network of workstations

Modern VFS

ò  Dozens of supported file systems

ò  Allows experimentation with new features and designs
transparent to applications

ò  Interoperability with removable media and other OSes

ò  Independent layer from backing storage

ò  Pseudo FSes used for configuration (/proc, /devtmps…)
only backed by kernel data structures

ò  And, of course, networked file system support

More detailed diagram

VFS

ext4

Page Cache

Block Device

IO Scheduler

Driver

Disk

Kernel

User

btrfs fat32 nfs

Network

User’s perspective

ò  Single programming interface

ò  (POSIX file system calls – open, read, write, etc.)

ò  Single file system tree

ò  A remote file system with home directories can be
transparently mounted at /home

ò  Alternative: Custom library for each file system

ò  Much more trouble for the programmer

What the VFS does

ò  The VFS is a substantial piece of code, not just an API
wrapper

ò  Caches file system metadata (e.g., file names, attributes)

ò  Coordinates data caching with the page cache

ò  Enforces a common access control model

ò  Implements complex, common routines, such as path
lookup, file opening, and file handle management

FS Developer’s Perspective

ò  FS developer responsible for implementing a set of
standard objects/functions, which are called by the VFS

ò  Primarily populating in-memory objects from stable
storage, and writing them back

ò  Can use block device interfaces to schedule disk I/O

ò  And page cache functions

ò  And some VFS helpers

ò  Analogous to implementing Java abstract classes

High-level FS dev. tasks

ò  Translate between volatile VFS objects and backing
storage (whether device, remote system, or other/none)

ò  Potentially includes requesting I/O

ò  Read and write file pages

Opportunities

ò  VFS doesn’t prescribe all aspects of FS design

ò  More of a lowest common denominator

ò  Opportunities: (to name a few)

ò  More optimal media usage/scheduling

ò  Varying on-disk consistency guarantees

ò  Features (e.g., encryption, virus scanning, snapshotting)

Core VFS abstractions

ò  super block – FS-global data

ò  Early/many file systems put this as first block of partition

ò  inode (index node) – metadata for one file

ò  dentry (directory entry) – file name to inode mapping

ò  file – a file handle – refers to a dentry and a cursor in the
file (offset)

Super blocks

ò  SB + inodes are extended by FS developer

ò  Stores all FS-global data

ò  Opaque pointer (s_fs_info) for fs-specific data

ò  Includes many hooks for tasks such as creating or
destroying inodes

ò  Dirty flag for when it needs to be synced with disk

ò  Kernel keeps a circular list of all of these

Inode

ò  The second object extended by the FS

ò  Huge – more fields than we can talk about

ò  Tracks:

ò  File attributes: permissions, size, modification time, etc.

ò  File contents:

ò  Address space for contents cached in memory

ò  Low-level file system stores block locations on disk

ò  Flags, including dirty inode and dirty data

Inode history

ò  Name goes back to file systems that stored file metadata
at fixed intervals on the disk

ò  If you knew the file’s index number, you could find its
metadata on disk

ò  Hence, the name ‘index node’

ò  Original VFS design called them ‘vnode’ for virtual node
(perhaps more appropriately)

ò  Linux uses the name inode

Embedded inodes

ò  Many file systems embed the VFS inode in a larger, FS-specific
inode, e.g.,:

struct donfs_inode {

 int ondisk_blocks[];

 /* other stuff*/

 struct inode vfs_inode;

}

ò  Why? Finding the low-level data associated with an inode just
requires simple (compiler-generated) math

Linking

ò  An inode uniquely identifies a file for its lifespan

ò  Does not change when renamed

ò  Model: Inode tracks “links” or references

ò  Created by open file handles and file names in a directory that
point to the inode

ò  Ex: renaming the file temporarily increases link count and then
lower it again

ò  When link count is zero, inode (and contents) deleted

ò  There is no ‘delete’ system call, only ‘unlink’

Linking, cont.

ò  “Hard” link (link system call/ln utility): creates a second
name for the same file; modifications to either name changes
contents.

ò  This is not a copy

ò  Common trick for temporary files:

ò  create (1 link)

ò  open (2 links)

ò  unlink (1 link)

ò  File gets cleaned up when program dies
ò  (kernel removes last link)

Inode ‘stats’

ò  The ‘stat’ word encodes both permissions and type

ò  High bits encode the type: regular file, directory, pipe,
char device, socket, block device, etc.

ò  Unix: Everything’s a file! VFS involved even with sockets!

ò  Lower bits encode permissions:

ò  3 bits for each of User, Group, Other + 3 special bits

ò  Bits: 2 = read, 1 = write, 0 = execute

ò  Ex: 750 – User RWX, Group RX, Other nothing

Special bits

ò  For directories, ‘Execute’ means search

ò  X-only permissions means I can find readable subdirectories or
files, but can’t enumerate the contents

ò  Useful for sharing files in your home directory, without sharing
your home directory contents

ò  Lots of information in meta-data!

ò  Setuid bit

ò  Mostly relevant for executables: Allows anyone who runs this
program to execute with owner’s uid

ò  Crude form of permission delegation

More special bits

ò  Group inheritance bit

ò  In general, when I create a file, it is owned by my default
group

ò  If I create in a ‘g+s’ directory, the directory group owns
the file

ò  Useful for things like shared git repositories

ò  Sticky bit

ò  Restricts deletion of files

File objects

ò  Represent an open file; point to a dentry and cursor

ò  Each process has a table of pointers to them

ò  The int fd returned by open is an offset into this table

ò  These are VFS-only abstractions; the FS doesn’t need to
track which process has a reference to a file

ò  Files have a reference count. Why?

ò  Fork also copies the file handles

ò  If your child reads from the handle, it advances your
(shared) cursor

File handle games

ò  dup, dup2 – Copy a file handle

ò  Just creates 2 table entries for same file struct, increments
the reference count

ò  seek – adjust the cursor position

ò  Obviously a throw-back to when files were on tapes

ò  fcntl – Like ioctl (misc operations), but for files

ò  CLOSE_ON_EXEC – a bit that prevents file inheritance
if a new binary is exec’ed (set by open or fcntl)

Dentries

ò  These store:

ò  A file name

ò  A link to an inode

ò  A parent pointer (null for root of file system)

ò  Ex: /home/porter/vfs.pptx would have 4 dentries:

ò  /, home, porter, & vfs.pptx

ò  Parent pointer distinguishes /home/porter from /tmp/porter

ò  These are also VFS-only abstractions

ò  Although inode hooks on directories can populate them

Why dentries?

ò  A simple directory model might just treat it as a file
listing <name, inode> tuples

ò  Why not just use the page cache for this?

ò  FS directory tree traversal very common; optimize with
special data structures

ò  The dentry cache is a complex data structure we will
discuss in much more detail later

Summary of abstractions

ò  Super blocks – FS- global data

ò  Inodes – stores a given file

ò  File (handle) – Essentially a <dentry, offset> tuple

ò  Dentry – Essentially a <name, parent dentry, inode>
tuple

More on the user’s
perspective

ò  Let’s wrap today by discussing some common FS system
calls in more detail

ò  Let’s play it as a trivia game

ò  What call would you use to…

Create a file?

ò  creat

ò  More commonly, open with the O_CREAT flag

ò  Avoid race conditions between creation and open

ò  What does O_EXCL do?

ò  Fails if the file already exists

Create a directory?

ò  mkdir

ò  But I thought everything in Unix was a file!?!

ò  This means that sometimes you can read/write an existing
handle, even if you don’t know what is behind it.

ò  Even this doesn’t work for directories

Remove a directory

ò  rmdir

Remove a file

ò  unlink

Read a file?

ò  read()

ò  How do you change cursor position?

ò  lseek (or pread)

Read a directory?

ò  readdir or getdents

Shorten a file

ò  truncate/ftruncate

ò  Can also be used to create a file full of zeros of abritrary
length

ò  Often blocks on disk are demand-allocated
(laziness rules!)

What is a symbolic link?

ò  A special file type that stores the name of another file

ò  How different from a hard link?

ò  Doesn’t raise the link count of the file

ò  Can be “broken,” or point to a missing file

ò  How created?

ò  symlink system call or ‘ln –s’ command

Let’s step it up a bit

How does an editor save a
file?

ò  Hint: we don’t want the program to crash with a half-
written file

ò  Create a backup (using open)

ò  Write the full backup (using read old/ write new)

ò  Close both

ò  Do a rename(old, new) to atomically replace

How does ‘ls’ work?

ò  dh = open(dir)

ò  for each file (while readdir(dh))

ò  Print file name

ò  close(dh)

What about that cool
colored text?

ò  dh = open(dir)

ò  for each file (while readdir(dh))

ò  stat(file, &stat_buf)

ò  if (stat & execute bit) color == green

ò  else if …

ò  Print file name

ò  Reset color

ò  close(dh)

Summary

ò  Today’s goal: VFS overview from many perspectives

ò  User (application programmer)

ò  FS implementer

ò  Used many page cache and disk I/O tools we’ve seen

ò  Key VFS objects

ò  Important to be able to pick POSIX fs system calls from
a line up

ò  Homework: think about pseudocode from any simple
command-line file system utilities you type this weekend

