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Today’s Lecture 



History 

ò  Early OSes provided a single file system 

ò  In general, system was pretty tailored to target hardware 

ò  In the early 80s, people became interested in supporting 
more than one file system type on a single system 

ò  Any guesses why? 

ò  Networked file systems – sharing parts of  a file system 
transparently across a network of  workstations 



Modern VFS  

ò  Dozens of  supported file systems 

ò  Allows experimentation with new features and designs 
transparent to applications 

ò  Interoperability with removable media and other OSes 

ò  Independent layer from backing storage 

ò  Pseudo FSes used for configuration (/proc, /devtmps…) 
only backed by kernel data structures 

ò  And, of  course, networked file system support 
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User’s perspective 

ò  Single programming interface  

ò  (POSIX file system calls – open, read, write, etc.) 

ò  Single file system tree 

ò  A remote file system with home directories can be 
transparently mounted at /home 

ò  Alternative: Custom library for each file system 

ò  Much more trouble for the programmer 



What the VFS does 

ò  The VFS is a substantial piece of  code, not just an API 
wrapper 

ò  Caches file system metadata (e.g., file names, attributes) 

ò  Coordinates data caching with the page cache 

ò  Enforces a common access control model 

ò  Implements complex, common routines, such as path 
lookup, file opening, and file handle management 



FS Developer’s Perspective 

ò  FS developer responsible for implementing a set of  
standard objects/functions, which are called by the VFS 

ò  Primarily populating in-memory objects from stable 
storage, and writing them back 

ò  Can use block device interfaces to schedule disk I/O 

ò  And page cache functions 

ò  And some VFS helpers 

ò  Analogous to implementing Java abstract classes 



High-level FS dev. tasks 

ò  Translate between volatile VFS objects and backing 
storage (whether device, remote system, or other/none) 

ò  Potentially includes requesting I/O 

ò  Read and write file pages 



Opportunities 

ò  VFS doesn’t prescribe all aspects of  FS design 

ò  More of  a lowest common denominator 

ò  Opportunities: (to name a few) 

ò  More optimal media usage/scheduling 

ò  Varying on-disk consistency guarantees 

ò  Features (e.g., encryption, virus scanning, snapshotting) 



Core VFS abstractions 

ò  super block – FS-global data 

ò  Early/many file systems put this as first block of  partition 

ò  inode (index node) – metadata for one file 

ò  dentry (directory entry) – file name to inode mapping 

ò  file – a file handle – refers to a dentry and a cursor in the 
file (offset) 



Super blocks 

ò  SB + inodes are extended by FS developer 

ò  Stores all FS-global data 

ò  Opaque pointer (s_fs_info) for fs-specific data 

ò  Includes many hooks for tasks such as creating or 
destroying inodes 

ò  Dirty flag for when it needs to be synced with disk 

ò  Kernel keeps a circular list of  all of  these 



Inode 

ò  The second object extended by the FS 

ò  Huge – more fields than we can talk about 

ò  Tracks: 

ò  File attributes: permissions, size, modification time, etc. 

ò  File contents: 

ò  Address space for contents cached in memory 

ò  Low-level file system stores block locations on disk 

ò  Flags, including dirty inode and dirty data 



Inode history 

ò  Name goes back to file systems that stored file metadata 
at fixed intervals on the disk 

ò  If  you knew the file’s index number, you could find its 
metadata on disk 

ò  Hence, the name ‘index node’ 

ò  Original VFS design called them ‘vnode’ for virtual node 
(perhaps more appropriately) 

ò  Linux uses the name inode 



Embedded inodes 

ò  Many file systems embed the VFS inode in a larger, FS-specific 
inode, e.g.,: 

struct donfs_inode { 

 int ondisk_blocks[]; 

 /* other stuff*/ 

 struct inode vfs_inode; 

} 

ò  Why?  Finding the low-level data associated with an inode just 
requires simple (compiler-generated) math 



Linking 

ò  An inode uniquely identifies a file for its lifespan 

ò  Does not change when renamed 

ò  Model: Inode tracks “links” or references 

ò  Created by open file handles and file names in a directory that 
point to the inode 

ò  Ex: renaming the file temporarily increases link count and then 
lower it again 

ò  When link count is zero, inode (and contents) deleted 

ò  There is no ‘delete’ system call, only ‘unlink’ 



Linking, cont. 

ò  “Hard” link (link system call/ln utility): creates a second 
name for the same file; modifications to either name changes 
contents. 

ò  This is not a copy 

ò  Common trick for temporary files: 

ò  create (1 link) 

ò  open (2 links) 

ò  unlink (1 link) 

ò  File gets cleaned up when program dies  
ò  (kernel removes last link) 



Inode ‘stats’ 

ò  The ‘stat’ word encodes both permissions and type 

ò  High bits encode the type: regular file, directory, pipe, 
char device, socket, block device, etc. 

ò  Unix: Everything’s a file!  VFS involved even with sockets! 

ò  Lower bits encode permissions: 

ò  3 bits for each of  User, Group, Other + 3 special bits 

ò  Bits: 2 = read, 1 = write, 0 = execute 

ò  Ex: 750 – User RWX, Group RX, Other nothing  



Special bits 

ò  For directories, ‘Execute’ means search 

ò  X-only permissions means I can find readable subdirectories or 
files, but can’t enumerate the contents 

ò  Useful for sharing files in your home directory, without sharing 
your home directory contents 

ò  Lots of  information in meta-data! 

ò  Setuid bit 

ò  Mostly relevant for executables: Allows anyone who runs this 
program to execute with owner’s uid 

ò  Crude form of  permission delegation 



More special bits 

ò  Group inheritance bit 

ò  In general, when I create a file, it is owned by my default 
group 

ò  If  I create in a ‘g+s’ directory, the directory group owns 
the file 

ò  Useful for things like shared git repositories 

ò  Sticky bit 

ò  Restricts deletion of  files 



File objects  

ò  Represent an open file; point to a dentry and cursor 

ò  Each process has a table of  pointers to them 

ò  The int fd returned by open is an offset into this table 

ò  These are VFS-only abstractions; the FS doesn’t need to 
track which process has a reference to a file 

ò  Files have a reference count.  Why? 

ò  Fork also copies the file handles 

ò  If  your child reads from the handle, it advances your 
(shared) cursor 



File handle games 

ò  dup, dup2 – Copy a file handle 

ò  Just creates 2 table entries for same file struct, increments 
the reference count 

ò  seek – adjust the cursor position 

ò  Obviously a throw-back to when files were on tapes 

ò  fcntl – Like ioctl (misc operations), but for files 

ò  CLOSE_ON_EXEC – a bit that prevents file inheritance 
if  a new binary is exec’ed (set by open or fcntl) 



Dentries 

ò  These store:  

ò  A file name 

ò  A link to an inode 

ò  A parent pointer (null for root of  file system) 

ò  Ex: /home/porter/vfs.pptx would have 4 dentries: 

ò  /, home, porter, & vfs.pptx 

ò  Parent pointer distinguishes /home/porter from /tmp/porter 

ò  These are also VFS-only abstractions 

ò  Although inode hooks on directories can populate them 



Why dentries? 

ò  A simple directory model might just treat it as a file 
listing <name, inode> tuples 

ò  Why not just use the page cache for this? 

ò  FS directory tree traversal very common; optimize with 
special data structures 

ò  The dentry cache is a complex data structure we will 
discuss in much more detail later 



Summary of  abstractions 

ò  Super blocks – FS- global data 

ò  Inodes – stores a given file 

ò  File (handle) – Essentially a <dentry, offset> tuple 

ò  Dentry – Essentially a <name, parent dentry, inode> 
tuple 



More on the user’s 
perspective 

ò  Let’s wrap today by discussing some common FS system 
calls in more detail 

ò  Let’s play it as a trivia game 

ò  What call would you use to… 



Create a file? 

ò  creat 

ò  More commonly, open with the O_CREAT flag 

ò  Avoid race conditions between creation and open 

ò  What does O_EXCL do? 

ò  Fails if  the file already exists 



Create a directory? 

ò  mkdir 

ò  But I thought everything in Unix was a file!?! 

ò  This means that sometimes you can read/write an existing 
handle, even if  you don’t know what is behind it. 

ò  Even this doesn’t work for directories 



Remove a directory 

ò  rmdir 



Remove a file 

ò  unlink 



Read a file? 

ò  read() 

ò  How do you change cursor position? 

ò  lseek (or pread) 



Read a directory? 

ò  readdir or getdents 



Shorten a file 

ò  truncate/ftruncate 

ò  Can also be used to create a file full of  zeros of  abritrary 
length 

ò  Often blocks on disk are demand-allocated  
(laziness rules!) 



What is a symbolic link? 

ò  A special file type that stores the name of  another file 

ò  How different from a hard link? 

ò  Doesn’t raise the link count of  the file 

ò  Can be “broken,” or point to a missing file 

ò  How created? 

ò  symlink system call or ‘ln –s’ command 



Let’s step it up a bit 



How does an editor save a 
file? 

ò  Hint: we don’t want the program to crash with a half-
written file 

ò  Create a backup (using open) 

ò  Write the full backup (using read old/ write new) 

ò  Close both 

ò  Do a rename(old, new) to atomically replace 



How does ‘ls’ work? 

ò  dh  = open(dir) 

ò  for each file (while readdir(dh)) 

ò  Print file name 

ò  close(dh) 



What about that cool 
colored text? 

ò  dh  = open(dir) 

ò  for each file (while readdir(dh)) 

ò  stat(file, &stat_buf) 

ò  if  (stat & execute bit) color == green 

ò  else if  … 

ò  Print file name 

ò  Reset color 

ò  close(dh) 



Summary 

ò  Today’s goal: VFS overview from many perspectives 

ò  User (application programmer) 

ò  FS implementer 

ò  Used many page cache and disk I/O tools we’ve seen 

ò  Key VFS objects 

ò  Important to be able to pick POSIX fs system calls from 
a line up 

ò  Homework: think about pseudocode from any simple 
command-line file system utilities you type this weekend 


