
Scheduling
Don Porter

CSE 506

Housekeeping

ò  Paper reading assigned for next Tuesday

Logical Diagram

Memory
Management

CPU
Scheduler

User

Kernel

Hardware

Binary
Formats

Consistency

System Calls

Interrupts Disk Net

RCU File System

Device
Drivers

Networking Sync

Memory
Allocators Threads

Today’s Lecture
Switching to CPU

scheduling

Lecture goals

ò  Understand low-level building blocks of a scheduler

ò  Understand competing policy goals

ò  Understand the O(1) scheduler

ò  CFS next lecture

ò  Familiarity with standard Unix scheduling APIs

Undergrad review

ò  What is cooperative multitasking?

ò  Processes voluntarily yield CPU when they are done

ò  What is preemptive multitasking?

ò  OS only lets tasks run for a limited time, then forcibly context
switches the CPU

ò  Pros/cons?

ò  Cooperative gives more control; so much that one task can hog
the CPU forever

ò  Preemptive gives OS more control, more overheads/complexity

Where can we preempt a
process?

ò  In other words, what are the logical points at which the
OS can regain control of the CPU?

ò  System calls

ò  Before

ò  During (more next time on this)

ò  After

ò  Interrupts

ò  Timer interrupt – ensures maximum time slice

(Linux) Terminology

ò  mm_struct – represents an address space in kernel

ò  task – represents a thread in the kernel

ò  A task points to 0 or 1 mm_structs

ò  Kernel threads just “borrow” previous task’s mm, as they
only execute in kernel address space

ò  Many tasks can point to the same mm_struct

ò  Multi-threading

ò  Quantum – CPU timeslice

Outline

ò  Policy goals

ò  Low-level mechanisms

ò  O(1) Scheduler

ò  CPU topologies

ò  Scheduling interfaces

Policy goals

ò  Fairness – everything gets a fair share of the CPU

ò  Real-time deadlines

ò  CPU time before a deadline more valuable than time after

ò  Latency vs. Throughput: Timeslice length matters!

ò  GUI programs should feel responsive

ò  CPU-bound jobs want long timeslices, better throughput

ò  User priorities

ò  Virus scanning is nice, but I don’t want it slowing things down

No perfect solution

ò  Optimizing multiple variables

ò  Like memory allocation, this is best-effort

ò  Some workloads prefer some scheduling strategies

ò  Nonetheless, some solutions are generally better than
others

Context switching

ò  What is it?

ò  Swap out the address space and running thread

ò  Address space:

ò  Need to change page tables

ò  Update cr3 register on x86

ò  Simplified by convention that kernel is at same address
range in all processes

ò  What would be hard about mapping kernel in different
places?

Other context switching
tasks

ò  Swap out other register state

ò  Segments, debugging registers, MMX, etc.

ò  If descheduling a process for the last time, reclaim its
memory

ò  Switch thread stacks

Switching threads

ò  Programming abstraction:

 /* Do some work */

 schedule(); /* Something else runs */

 /* Do more work */

How to switch stacks?

ò  Store register state on the stack in a well-defined format

ò  Carefully update stack registers to new stack

ò  Tricky: can’t use stack-based storage for this step!

Example

Thread 1
(prev)

Thread 2
(next)

/* eax is next->thread_info.esp */!
/* push general-purpose regs*/!
push ebp!
mov esp, eax!
pop ebp!
/* pop other regs */!

ebp

esp

eax

regs

ebp

regs

ebp

Weird code to write

ò  Inside schedule(), you end up with code like:

switch_to(me, next, &last);!

/* possibly clean up last */!

ò  Where does last come from?

ò  Output of switch_to

ò  Written on my stack by previous thread (not me)!

How to code this?

ò  Pick a register (say ebx); before context switch, this is a
pointer to last’s location on the stack

ò  Pick a second register (say eax) to stores the pointer to the
currently running task (me)

ò  Make sure to push ebx after eax

ò  After switching stacks:

ò  pop ebx /* eax still points to old task*/

ò  mov (ebx), eax /* store eax at the location ebx points to */

ò  pop eax /* Update eax to new task */

Outline

ò  Policy goals

ò  Low-level mechanisms

ò  O(1) Scheduler

ò  CPU topologies

ò  Scheduling interfaces

Strawman scheduler

ò  Organize all processes as a simple list

ò  In schedule():

ò  Pick first one on list to run next

ò  Put suspended task at the end of the list

ò  Problem?

ò  Only allows round-robin scheduling

ò  Can’t prioritize tasks

Even straw-ier man

ò  Naïve approach to priorities:

ò  Scan the entire list on each run

ò  Or periodically reshuffle the list

ò  Problems:

ò  Forking – where does child go?

ò  What about if you only use part of your quantum?

ò  E.g., blocking I/O

O(1) scheduler

ò  Goal: decide who to run next, independent of number of
processes in system

ò  Still maintain ability to prioritize tasks, handle partially
unused quanta, etc

O(1) Bookkeeping

ò  runqueue: a list of runnable processes

ò  Blocked processes are not on any runqueue

ò  A runqueue belongs to a specific CPU

ò  Each task is on exactly one runqueue

ò  Task only scheduled on runqueue’s CPU unless migrated

ò  2 *40 * #CPUs runqueues

ò  40 dynamic priority levels (more later)

ò  2 sets of runqueues – one active and one expired

O(1) Data Structures

Active Expired

139

138

137

100

101

.

.

.

139

138

137

100

101

.

.

.

O(1) Intuition

ò  Take the first task off the lowest-numbered runqueue on
active set

ò  Confusingly: a lower priority value means higher priority

ò  When done, put it on appropriate runqueue on expired
set

ò  Once active is completely empty, swap which set of
runqueues is active and expired

ò  Constant time, since fixed number of queues to check;
only take first item from non-empty queue

O(1) Example

Active Expired

139

138

137

100

101

.

.

.

139

138

137

100

101

.

.

.

Pick first,
highest

priority task
to run

Move to
expired queue
when quantum

expires

What now?

Active Expired

139

138

137

100

101

.

.

.

139

138

137

100

101

.

.

.

Blocked Tasks

ò  What if a program blocks on I/O, say for the disk?

ò  It still has part of its quantum left

ò  Not runnable, so don’t waste time putting it on the active
or expired runqueues

ò  We need a “wait queue” associated with each blockable
event

ò  Disk, lock, pipe, network socket, etc.

Blocking Example

Active Expired

139

138

137

100

101

.

.

.

139

138

137

100

101

.

.

.

Disk

Block
on disk! Process

goes on
disk wait

queue

Blocked Tasks, cont.

ò  A blocked task is moved to a wait queue until the
expected event happens

ò  No longer on any active or expired queue!

ò  Disk example:

ò  After I/O completes, interrupt handler moves task back to
active runqueue

Time slice tracking

ò  If a process blocks and then becomes runnable, how do
we know how much time it had left?

ò  Each task tracks ticks left in ‘time_slice’ field

ò  On each clock tick: current->time_slice--!

ò  If time slice goes to zero, move to expired queue

ò  Refill time slice

ò  Schedule someone else

ò  An unblocked task can use balance of time slice

ò  Forking halves time slice with child

More on priorities

ò  100 = highest priority

ò  139 = lowest priority

ò  120 = base priority

ò  “nice” value: user-specified adjustment to base priority

ò  Selfish (not nice) = -20 (I want to go first)

ò  Really nice = +19 (I will go last)

Base time slice

ò  “Higher” priority tasks get longer time slices

ò  And run first

time =
(140− prio)*20ms prio <120

(140− prio)*5ms prio ≥120

#

$
%

&
%

Goal: Responsive UIs

ò  Most GUI programs are I/O bound on the user

ò  Unlikely to use entire time slice

ò  Users get annoyed when they type a key and it takes a
long time to appear

ò  Idea: give UI programs a priority boost

ò  Go to front of line, run briefly, block on I/O again

ò  Which ones are the UI programs?

Idea: Infer from sleep time

ò  By definition, I/O bound applications spend most of
their time waiting on I/O

ò  We can monitor I/O wait time and infer which programs
are GUI (and disk intensive)

ò  Give these applications a priority boost

ò  Note that this behavior can be dynamic

ò  Ex: GUI configures DVD ripping, then it is CPU-bound

ò  Scheduling should match program phases

Dynamic priority

dynamic priority = max (100, min (static priority − bonus + 5,
139))

ò  Bonus is calculated based on sleep time

ò  Dynamic priority determines a tasks’ runqueue

ò  This is a heuristic to balance competing goals of CPU
throughput and latency in dealing with infrequent I/O

ò  May not be optimal

Dynamic Priority in O(1)
Scheduler

ò  Important: The runqueue a process goes in is determined
by the dynamic priority, not the static priority

ò  Dynamic priority is mostly determined by time spent
waiting, to boost UI responsiveness

ò  Nice values influence static priority

ò  No matter how “nice” you are (or aren’t), you can’t boost
your dynamic priority without blocking on a wait queue!

Rebalancing tasks

ò  As described, once a task ends up in one CPU’s
runqueue, it stays on that CPU forever

Rebalancing

CPU 0 CPU 1

.

.

.
.
.
.

CPU 1
Needs More

Work!

Rebalancing tasks

ò  As described, once a task ends up in one CPU’s
runqueue, it stays on that CPU forever

ò  What if all the processes on CPU 0 exit, and all of the
processes on CPU 1 fork more children?

ò  We need to periodically rebalance

ò  Balance overheads against benefits

ò  Figuring out where to move tasks isn’t free

Idea: Idle CPUs rebalance

ò  If a CPU is out of runnable tasks, it should take load
from busy CPUs

ò  Busy CPUs shouldn’t lose time finding idle CPUs to take
their work if possible

ò  There may not be any idle CPUs

ò  Overhead to figure out whether other idle CPUs exist

ò  Just have busy CPUs rebalance much less frequently

Average load

ò  How do we measure how busy a CPU is?

ò  Average number of runnable tasks over time

ò  Available in /proc/loadavg

Rebalancing strategy

ò  Read the loadavg of each CPU

ò  Find the one with the highest loadavg

ò  (Hand waving) Figure out how many tasks we could take

ò  If worth it, lock the CPU’s runqueues and take them

ò  If not, try again later

Locking note

ò  If CPU A locks CPU B’s runqueue to take some work:

ò  CPU B must lock its runqueues in the common case that
no one is rebalancing

ò  Cf. Hoard and per-CPU heaps

ò  Idiosyncrasy: runqueue locks are acquired by one task
and released by another

ò  Usually this would indicate a bug!

Why not rebalance?

ò  Intuition: If things run slower on another CPU

ò  Why might this happen?

ò  NUMA (Non-Uniform Memory Access)

ò  Hyper-threading

ò  Multi-core cache behavior

ò  Vs: Symmetric Multi-Processor (SMP) – performance on
all CPUs is basically the same

SMP

ò  All CPUs similar, equally “close” to memory

CPU0 CPU1 CPU2 CPU3

Memory

NUMA

ò  Want to keep execution near memory; higher migration costs

CPU0 CPU1 CPU2 CPU3

Memory Memory

Node Node

Scheduling Domains

ò  General abstraction for CPU topology

ò  “Tree” of CPUs

ò  Each leaf node contains a group of “close” CPUs

ò  When an idle CPU rebalances, it starts at leaf node and
works up to the root

ò  Most rebalancing within the leaf

ò  Higher threshold to rebalance across a parent

SMP Scheduling Domain

CPU0 CPU1 CPU2 CPU3

Flat, all CPUS
equivalent!

NUMA Scheduling
Domains

CPU0 CPU1 CPU2 CPU3

CPU0 starts
rebalancing

here first

Higher
threshold to

move to
sibling/
parent

Hyper-threading

ò  Precursor to multi-core

ò  A few more transistors than Intel knew what to do with,
but not enough to build a second core on a chip yet

ò  Duplicate architectural state (registers, etc), but not
execution resources (ALU, floating point, etc)

ò  OS view: 2 logical CPUs

ò  CPU: pipeline bubble in one “CPU” can be filled with
operations from another; yielding higher utilization

Hyper-threaded
scheduling

ò  Imagine 2 hyper-threaded CPUs

ò  4 Logical CPUs

ò  But only 2 CPUs-worth of power

ò  Suppose I have 2 tasks

ò  They will do much better on 2 different physical CPUs
than sharing one physical CPU

ò  They will also contend for space in the cache

ò  Less of a problem for threads in same program. Why?

NUMA + Hyperthreading
Scheduling Domains

CPU0

CPU1

NUMA DOMAIN 1 NUMA DOMAIN 1

CPU2

CPU3

CPU4

CPU5

CPU6

CPU7

Logical
CPU

Physical
CPU

is a sched
domain

Multi-core

ò  More levels of caches

ò  Migration among CPUs sharing a cache preferable

ò  Why?

ò  More likely to keep data in cache

ò  Scheduling domains based on shared caches

ò  E.g., cores on same chip are in one domain

Outline

ò  Policy goals

ò  Low-level mechanisms

ò  O(1) Scheduler

ò  CPU topologies

ò  Scheduling interfaces

Setting priorities

ò  setpriority(which, who, niceval) and getpriority()

ò  Which: process, process group, or user id

ò  PID, PGID, or UID

ò  Niceval: -20 to +19 (recall earlier)

ò  nice(niceval)

ò  Historical interface (backwards compatible)

ò  Equivalent to:

ò  setpriority(PRIO_PROCESS, getpid(), niceval)

Scheduler Affinity

ò  sched_setaffinity and sched_getaffinity

ò  Can specify a bitmap of CPUs on which this can be
scheduled

ò  Better not be 0!

ò  Useful for benchmarking: ensure each thread on a
dedicated CPU

yield

ò  Moves a runnable task to the expired runqueue

ò  Unless real-time (more later), then just move to the end of
the active runqueue

ò  Several other real-time related APIs

Summary

ò  Understand competing scheduling goals

ò  Understand how context switching implemented

ò  Understand O(1) scheduler + rebalancing

ò  Understand various CPU topologies and scheduling
domains

ò  Scheduling system calls

