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Housekeeping 

ò  Paper reading assigned for next Tuesday 
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Lecture goals 

ò  Understand low-level building blocks of  a scheduler 

ò  Understand competing policy goals 

ò  Understand the O(1) scheduler 

ò  CFS next lecture 

ò  Familiarity with standard Unix scheduling APIs 



Undergrad review 

ò  What is cooperative multitasking? 

ò  Processes voluntarily yield CPU when they are done 

ò  What is preemptive multitasking? 

ò  OS only lets tasks run for a limited time, then forcibly context 
switches the CPU 

ò  Pros/cons? 

ò  Cooperative gives more control; so much that one task can hog 
the CPU forever 

ò  Preemptive gives OS more control, more overheads/complexity 



Where can we preempt a 
process? 

ò  In other words, what are the logical points at which the 
OS can regain control of  the CPU? 

ò  System calls 

ò  Before 

ò  During (more next time on this) 

ò  After 

ò  Interrupts 

ò  Timer interrupt – ensures maximum time slice 



(Linux) Terminology 

ò  mm_struct – represents an address space in kernel 

ò  task – represents a thread in the kernel 

ò  A task points to 0 or 1 mm_structs 

ò  Kernel threads just “borrow” previous task’s mm, as they 
only execute in kernel address space 

ò  Many tasks can point to the same mm_struct  

ò  Multi-threading 

ò  Quantum – CPU timeslice 



Outline 

ò  Policy goals 

ò  Low-level mechanisms 

ò  O(1) Scheduler 

ò  CPU topologies 

ò  Scheduling interfaces 



Policy goals 

ò  Fairness – everything gets a fair share of  the CPU 

ò  Real-time deadlines 

ò  CPU time before a deadline more valuable than time after 

ò  Latency vs. Throughput: Timeslice length matters! 

ò  GUI programs should feel responsive 

ò  CPU-bound jobs want long timeslices, better throughput 

ò  User priorities 

ò  Virus scanning is nice, but I don’t want it slowing things down 



No perfect solution 

ò  Optimizing multiple variables 

ò  Like memory allocation, this is best-effort 

ò  Some workloads prefer some scheduling strategies 

ò  Nonetheless, some solutions are generally better than 
others 



Context switching 

ò  What is it? 

ò  Swap out the address space and running thread 

ò  Address space: 

ò  Need to change page tables 

ò  Update cr3 register on x86 

ò  Simplified by convention that kernel is at same address 
range in all processes 

ò  What would be hard about mapping kernel in different 
places? 



Other context switching 
tasks 

ò  Swap out other register state 

ò  Segments, debugging registers, MMX, etc. 

ò  If  descheduling a process for the last time, reclaim its 
memory 

ò  Switch thread stacks 



Switching threads 

ò  Programming abstraction: 

 

 /* Do some work */ 

 schedule(); /* Something else runs */ 

 /* Do more work */ 



How to switch stacks? 

ò  Store register state on the stack in a well-defined format 

ò  Carefully update stack registers to new stack 

ò  Tricky: can’t use stack-based storage for this step! 



Example 

Thread 1 
(prev) 

Thread 2 
(next) 

/* eax is next->thread_info.esp */!
/* push general-purpose regs*/!
push ebp!
mov esp, eax!
pop ebp!
/* pop other regs */!

ebp 

esp 

eax 

regs 

ebp 

regs 

ebp 



Weird code to write 

ò  Inside schedule(), you end up with code like: 

switch_to(me, next, &last);!

/* possibly clean up last */!

 

ò  Where does last come from? 

ò  Output of  switch_to 

ò  Written on my stack by previous thread (not me)! 



How to code this? 

ò  Pick a register (say ebx); before context switch, this is a 
pointer to last’s location on the stack 

ò  Pick a second register (say eax) to stores the pointer to the 
currently running task (me) 

ò  Make sure to push ebx after eax 

ò  After switching stacks:  

ò  pop ebx                       /* eax still points to old task*/ 

ò  mov (ebx), eax          /* store eax at the location ebx points to */ 

ò  pop eax                        /* Update eax to new task */ 



Outline 

ò  Policy goals 

ò  Low-level mechanisms 

ò  O(1) Scheduler 

ò  CPU topologies 

ò  Scheduling interfaces 



Strawman scheduler 

ò  Organize all processes as a simple list 

ò  In schedule(): 

ò  Pick first one on list to run next 

ò  Put suspended task at the end of  the list 

ò  Problem? 

ò  Only allows round-robin scheduling 

ò  Can’t prioritize tasks 



Even straw-ier man 

ò  Naïve approach to priorities: 

ò  Scan the entire list on each run 

ò  Or periodically reshuffle the list 

ò  Problems: 

ò  Forking – where does child go? 

ò  What about if  you only use part of  your quantum? 

ò  E.g., blocking I/O 



O(1) scheduler 

ò  Goal: decide who to run next, independent of  number of  
processes in system 

ò  Still maintain ability to prioritize tasks, handle partially 
unused quanta, etc 



O(1) Bookkeeping 

ò  runqueue: a list of  runnable processes 

ò  Blocked processes are not on any runqueue 

ò  A runqueue belongs to a specific CPU 

ò  Each task is on exactly one runqueue 

ò  Task only scheduled on runqueue’s CPU unless migrated 

ò  2 *40 * #CPUs runqueues 

ò  40 dynamic priority levels (more later) 

ò  2 sets of  runqueues – one active and one expired 



O(1) Data Structures 
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O(1) Intuition 

ò  Take the first task off  the lowest-numbered runqueue on 
active set 

ò  Confusingly: a lower priority value means higher priority 

ò  When done, put it on appropriate runqueue on expired 
set 

ò  Once active is completely empty, swap which set of  
runqueues is active and expired 

ò  Constant time, since fixed number of  queues to check; 
only take first item from non-empty queue 



O(1) Example 
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What now? 
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Blocked Tasks 

ò  What if  a program blocks on I/O, say for the disk? 

ò  It still has part of  its quantum left 

ò  Not runnable, so don’t waste time putting it on the active 
or expired runqueues 

ò  We need a “wait queue” associated with each blockable 
event 

ò  Disk, lock, pipe, network socket, etc. 



Blocking Example 
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Blocked Tasks, cont. 

ò  A blocked task is moved to a wait queue until the 
expected event happens 

ò  No longer on any active or expired queue! 

ò  Disk example: 

ò  After I/O completes, interrupt handler moves task back to 
active runqueue 



Time slice tracking 

ò  If  a process blocks and then becomes runnable, how do 
we know how much time it had left? 

ò  Each task tracks ticks left in ‘time_slice’ field 

ò  On each clock tick: current->time_slice--!

ò  If  time slice goes to zero, move to expired queue 

ò  Refill time slice 

ò  Schedule someone else 

ò  An unblocked task can use balance of  time slice 

ò  Forking halves time slice with child 



More on priorities 

ò  100 = highest priority 

ò  139 = lowest priority 

ò  120 = base priority 

ò  “nice” value: user-specified adjustment to base priority 

ò  Selfish (not nice) = -20 (I want to go first) 

ò  Really nice = +19 (I will go last) 



Base time slice 

ò  “Higher” priority tasks get longer time slices 

ò  And run first 

time =
(140− prio)*20ms prio <120

(140− prio)*5ms prio ≥120

#

$
%

&
%



Goal: Responsive UIs 

ò  Most GUI programs are I/O bound on the user 

ò  Unlikely to use entire time slice 

ò  Users get annoyed when they type a key and it takes a 
long time to appear 

ò  Idea: give UI programs a priority boost  

ò  Go to front of  line, run briefly, block on I/O again 

ò  Which ones are the UI programs? 



Idea: Infer from sleep time 

ò  By definition, I/O bound applications spend most of  
their time waiting on I/O 

ò  We can monitor I/O wait time and infer which programs 
are GUI (and disk intensive) 

ò  Give these applications a priority boost 

ò  Note that this behavior can be dynamic 

ò  Ex: GUI configures DVD ripping, then it is CPU-bound 

ò  Scheduling should match program phases 



Dynamic priority 

dynamic priority = max ( 100, min ( static priority − bonus + 5, 
139 ) )  

ò  Bonus is calculated based on sleep time 

ò  Dynamic priority determines a tasks’ runqueue 

ò  This is a heuristic to balance competing goals of  CPU 
throughput and latency in dealing with infrequent I/O 

ò  May not be optimal 



Dynamic Priority in O(1) 
Scheduler 

ò  Important: The runqueue a process goes in is determined 
by the dynamic priority, not the static priority 

ò  Dynamic priority is mostly determined by time spent 
waiting, to boost UI responsiveness 

ò  Nice values influence static priority 

ò  No matter how “nice” you are (or aren’t), you can’t boost 
your dynamic priority without blocking on a wait queue! 



Rebalancing tasks 

ò  As described, once a task ends up in one CPU’s 
runqueue, it stays on that CPU forever 



Rebalancing 

CPU 0 CPU 1 

. 

. 

. 
. 
. 
. 

CPU 1 
Needs More 

Work! 



Rebalancing tasks 

ò  As described, once a task ends up in one CPU’s 
runqueue, it stays on that CPU forever 

ò  What if  all the processes on CPU 0 exit, and all of  the 
processes on CPU 1 fork more children? 

ò  We need to periodically rebalance 

ò  Balance overheads against benefits 

ò  Figuring out where to move tasks isn’t free 



Idea: Idle CPUs rebalance 

ò  If  a CPU is out of  runnable tasks, it should take load 
from busy CPUs 

ò  Busy CPUs shouldn’t lose time finding idle CPUs to take 
their work if  possible 

ò  There may not be any idle CPUs 

ò  Overhead to figure out whether other idle CPUs exist 

ò  Just have busy CPUs rebalance much less frequently 



Average load 

ò  How do we measure how busy a CPU is? 

ò  Average number of  runnable tasks over time 

ò  Available in /proc/loadavg  



Rebalancing strategy 

ò  Read the loadavg of  each CPU 

ò  Find the one with the highest loadavg 

ò  (Hand waving) Figure out how many tasks we could take 

ò  If  worth it, lock the CPU’s runqueues and take them 

ò  If  not, try again later 



Locking note 

ò  If  CPU A locks CPU B’s runqueue to take some work: 

ò  CPU B must lock its runqueues in the common case that 
no one is rebalancing 

ò  Cf. Hoard and per-CPU heaps 

ò  Idiosyncrasy: runqueue locks are acquired by one task 
and released by another 

ò  Usually this would indicate a bug! 



Why not rebalance? 

ò  Intuition: If  things run slower on another CPU 

ò  Why might this happen? 

ò  NUMA (Non-Uniform Memory Access) 

ò  Hyper-threading 

ò  Multi-core cache behavior 

ò  Vs: Symmetric Multi-Processor (SMP) – performance on 
all CPUs is basically the same 



SMP 

ò  All CPUs similar, equally “close” to memory 

CPU0 CPU1 CPU2 CPU3 

Memory 



NUMA 

ò  Want to keep execution near memory; higher migration costs 

CPU0 CPU1 CPU2 CPU3 

Memory Memory 

Node Node 



Scheduling Domains 

ò  General abstraction for CPU topology 

ò  “Tree” of  CPUs 

ò  Each leaf  node contains a group of  “close” CPUs 

ò  When an idle CPU rebalances, it starts at leaf  node and 
works up to the root 

ò  Most rebalancing within the leaf  

ò  Higher threshold to rebalance across a parent 



SMP Scheduling Domain 

CPU0 CPU1 CPU2 CPU3 

Flat, all CPUS 
equivalent! 



NUMA Scheduling 
Domains 

CPU0 CPU1 CPU2 CPU3 

CPU0 starts 
rebalancing

here first 

Higher 
threshold to 

move to 
sibling/
parent 



Hyper-threading 

ò  Precursor to multi-core 

ò  A few more transistors than Intel knew what to do with, 
but not enough to build a second core on a chip yet 

ò  Duplicate architectural state (registers, etc), but not 
execution resources (ALU, floating point, etc) 

ò  OS view: 2 logical CPUs 

ò  CPU: pipeline bubble in one “CPU” can be filled with 
operations from another; yielding higher utilization 



Hyper-threaded 
scheduling 

ò  Imagine 2 hyper-threaded CPUs 

ò  4 Logical CPUs 

ò  But only 2 CPUs-worth of  power 

ò  Suppose I have 2 tasks 

ò  They will do much better on 2 different physical CPUs 
than sharing one physical CPU 

ò  They will also contend for space in the cache 

ò  Less of  a problem for threads in same program.  Why? 



NUMA + Hyperthreading 
Scheduling Domains 

CPU0 

CPU1 

NUMA DOMAIN 1 NUMA DOMAIN 1 

CPU2 

CPU3 

CPU4 

CPU5 

CPU6 

CPU7 

Logical 
CPU 

Physical 
CPU 

is a sched 
domain 



Multi-core 

ò  More levels of  caches 

ò  Migration among CPUs sharing a cache preferable 

ò  Why? 

ò  More likely to keep data in cache 

ò  Scheduling domains based on shared caches 

ò  E.g., cores on same chip are in one domain 



Outline 

ò  Policy goals 

ò  Low-level mechanisms 

ò  O(1) Scheduler 

ò  CPU topologies 

ò  Scheduling interfaces 



Setting priorities 

ò  setpriority(which, who, niceval) and getpriority() 

ò  Which: process, process group, or user id 

ò  PID, PGID, or UID 

ò  Niceval: -20 to +19 (recall earlier) 

ò  nice(niceval)  

ò  Historical interface (backwards compatible) 

ò  Equivalent to:  

ò  setpriority(PRIO_PROCESS, getpid(), niceval) 



Scheduler Affinity 

ò  sched_setaffinity and sched_getaffinity 

ò  Can specify a bitmap of  CPUs on which this can be 
scheduled 

ò  Better not be 0! 

ò  Useful for benchmarking: ensure each thread on a 
dedicated CPU 



yield 

ò  Moves a runnable task to the expired runqueue 

ò  Unless real-time (more later), then just move to the end of  
the active runqueue 

ò  Several other real-time related APIs 



Summary 

ò  Understand competing scheduling goals 

ò  Understand how context switching implemented 

ò  Understand O(1) scheduler + rebalancing 

ò  Understand various CPU topologies and scheduling 
domains 

ò  Scheduling system calls 


