
9/18/12	

1	

The Page Cache
Don Porter

CSE 506

Logical Diagram

Memory
Management

CPU
Scheduler

User

Kernel

Hardware

Binary
Formats

Consistency

System Calls

Interrupts Disk Net

RCU File System

Device
Drivers

Networking Sync

Memory
Allocators Threads

Today’s Lecture
(kernel level mem.

management)

Recap of previous lectures

ò  Page tables: translate virtual addresses to physical
addresses

ò  VM Areas (Linux): track what should be mapped at in
the virtual address space of a process

ò  Hoard/Linux slab: Efficient allocation of objects from a
superblock/slab of pages

Background

ò  Lab2: Track physical pages with an array of page structs

ò  Contains reference counts

ò  Free list layered over this array

ò  Just like JOS, Linux represents physical memory with an
array of page structs

ò  Obviously, not the exact same contents, but same idea

ò  Pages can be allocated to processes, or to cache file data
in memory

Today’s Problem

ò  Given a VMA or a file’s inode, how do I figure out
which physical pages are storing its data?

ò  Next lecture: We will go the other way, from a physical
page back to the VMA or file inode

The address space
abstraction

ò  Unifying abstraction:

ò  Each file inode has an address space (0—file size)

ò  So do block devices that cache data in RAM (0---dev size)

ò  The (anonymous) virtual memory of a process has an
address space (0—4GB on x86)

ò  In other words, all page mappings can be thought of as
and (object, offset) tuple

ò  Make sense?

9/18/12	

2	

Address Spaces for:

ò  VM Areas (VMAs)

ò  Files

Start Simple

ò  “Anonymous” memory – no file backing it

ò  E.g., the stack for a process

ò  Not shared between processes

ò  Will discuss sharing and swapping later

ò  How do we figure out virtual to physical mapping?

ò  Just walk the page tables!

ò  Linux doesn’t do anything outside of the page tables to
track this mapping

File mappings

ò  A VMA can also represent a memory mapped file

ò  The kernel can also map file pages to service read() or
write() system calls

ò  Goal: We only want to load a file into memory once!

Logical View

Disk
Hello!

Foo.txt
inode

?
Process A

?

Process B

?

Process C

?

VMA to a file

ò  Also easy: VMA includes a file pointer and an offset into
file

ò  A VMA may map only part of the file

ò  Offset must be at page granularity

ò  Anonymous mapping: file pointer is null

ò  File pointer is an open file descriptor in the process file
descriptor table

ò  We will discuss file handles later

Logical View

Disk

Hello! Foo.txt
inode

?
Process A

Process B

Process C

File
Descriptor

Table

FDs are
process-
specific

9/18/12	

3	

Tracking file pages

ò  What data structure to use for a file?

ò  No page tables for files

ò  For example: What page stores the first 4k of file “foo”

ò  What data structure to use?

ò  Hint: Files can be small, or very, very large

The Radix Tree

ò  A space-optimized trie

ò  Trie: Rather than store entire key in each node, traversal of
parent(s) builds a prefix, node just stores suffix

ò  Especially useful for strings

ò  Prefix less important for file offsets, but does bound key
storage space

ò  More important: A tree with a branching factor k > 2

ò  Faster lookup for large files (esp. with tricks)

ò  Note: Linux’s use of the Radix tree is constrained

A bit more detail

ò  Assume an upper bound on file size when building the
radix tree

ò  Can rebuild later if we are wrong

ò  Specifically: Max size is 256k, branching factor (k) = 64

ò  256k / 4k pages = 64 pages

ò  So we need a radix tree of height 1 to represent these
pages

Tree of height 1

ò  Root has 64 slots, can be null, or a pointer to a page

ò  Lookup address X:

ò  Shift off low 12 bits (offset within page)

ò  Use next 6 bits as an index into these slots (2^6 = 64)

ò  If pointer non-null, go to the child node (page)

ò  If null, page doesn’t exist

Tree of height n

ò  Similar story:

ò  Shift off low 12 bits

ò  At each child shift off 6 bits from middle (starting at 6 * (distance to the
bottom – 1) bits) to find which of the 64 potential children to go to

ò  Use fixed height to figure out where to stop, which bits to use for offset

ò  Observations:

ò  “Key” at each node implicit based on position in tree

ò  Lookup time constant in height of tree

ò  In a general-purpose radix tree, may have to check all k children, for higher
lookup cost

Fixed heights

ò  If the file size grows beyond max height, must grow the tree

ò  Relatively simple: Add another root, previous tree becomes
first child

ò  Scaling in height:

ò  1: 2^((6*1) +12) = 256 KB

ò  2: 2^((6*2) + 12) = 16 MB

ò  3: 2^((6*3) + 12) = 1 GB

ò  4: 2^((6*4) + 12) = 16 GB

ò  5: 2^((6*5) + 12) = 4 TB

9/18/12	

4	

From “Understanding the
Linux Kernel”

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Page Cache | 605

not NULL, and tags is a two-component array of flags that will be discussed in the sec-
tion “The Tags of the Radix Tree” later in this chapter. The root of the tree is repre-
sented by a radix_tree_root data structure, having three fields: height denotes the
current tree’s height (number of levels excluding the leaves), gfp_mask specifies the
flags used when requesting memory for a new node, and rnode points to the radix_
tree_node data structure corresponding to the node at level 1 of the tree (if any).

Let us consider a simple example. If none of the indices stored in the tree is greater
than 63, the tree height is equal to one, because the 64 potential leaves can all be
stored in the node at level 1 (see Figure 15-1 (a)). If, however, a new page descriptor
corresponding to index 131 must be stored in the page cache, the tree height is
increased to two, so that the radix tree can pinpoint indices up to 4095 (see
Figure 15-1(b)).

Table 15-3 shows the highest page index and the corresponding maximum file size
for each given height of the radix tree on a 32-bit architecture. In this case, the maxi-
mum height of a radix tree is six, although it is quite unlikely that the page cache of
your system will make use of a radix tree that huge. Because the page index is stored
in a 32-bit variable, when the tree has height equal to six, the node at the highest
level can have at most four children.

Figure 15-1. Two examples of a radix tree

(a) radix tree of height 1 (b) radix tree of height 2

radix_tree_root

height = 1

radix_tree_node

rnode

count = 2

slots[0] slots[4]

index = 0

page

...

index = 4

0 63

radix_tree_root

height = 2

radix_tree_node

rnode

count = 2

...
0 63

radix_tree_node
count = 2

slots[0] slots[4]

index = 0

...

index = 4

0 63

slots[0]

radix_tree_node
count = 1

slots[3]

index = 131

...
0 63

slots[2]

page page page page

Back to address spaces

ò  Each address space for a file cached in memory includes
a radix tree

ò  Radix tree is sparse: pages not in memory are missing

ò  Radix tree also supports tags: such as dirty

ò  A tree node is tagged if at least one child also has the tag

ò  Example: I tag a file page dirty

ò  Must tag each parent in the radix tree as dirty

ò  When I am finished writing page back, I must check all
siblings; if none dirty, clear the parent’s dirty tag

Logical View

Disk

Hello!

Foo.txt
inode Process A

Process B

Process C

Address Space

Radix
Tree

Recap

ò  Anonymous page: Just use the page tables

ò  File-backed mapping

ò  VMA -> open file descriptor-> inode

ò  Inode -> address space (radix tree)-> page

Problem 2: Dirty pages

ò  Most OSes do not write file updates to disk immediately

ò  (Later lecture) OS tries to optimize disk arm movement

ò  OS instead tracks “dirty” pages

ò  Ensures that write back isn’t delayed too long

ò  Lest data be lost in a crash

ò  Application can force immediate write back with sync
system calls (and some open/mmap options)

Sync system calls

ò  sync() – Flush all dirty buffers to disk

ò  fsync(fd) – Flush all dirty buffers associated with this file
to disk (including changes to the inode)

ò  fdatasync(fd) – Flush only dirty data pages for this file to
disk

ò  Don’t bother with the inode

9/18/12	

5	

How to implement sync?

ò  Goal: keep overheads of finding dirty blocks low

ò  A naïve scan of all pages would work, but expensive

ò  Lots of clean pages

ò  Idea: keep track of dirty data to minimize overheads

ò  A bit of extra work on the write path, of course

How to implement sync?

ò  Background: Each file system has a super block

ò  All super blocks in a list

ò  Each super block keeps a list of dirty inodes

ò  Inodes and superblocks both marked dirty upon use

FS Organization

SB
/

SB
/floppy

SB
/d1

One
Superblock

per FS

inode

Dirty list

Dirty list of
inodes

Inodes and radix
nodes/pages
marked dirty

separately

Simple traversal

for each s in superblock list:

 if (s->dirty) writeback s

 for i in inode list:

 if (i->dirty) writeback i

 if (i->radix_root->dirty) :

 // Recursively traverse tree writing
 // dirty pages and clearing dirty flag

Asynchronous flushing

ò  Kernel thread(s): pdflush

ò  A kernel thread is a task that only runs in the kernel’s
address space

ò  2-8 threads, depending on how busy/idle threads are

ò  When pdflush runs, it is given a target number of pages
to write back

ò  Kernel maintains a total number of dirty pages

ò  Administrator configures a target dirty ratio (say 10%)

pdflush

ò  When pdflush is scheduled, it figures out how many
dirty pages are above the target ratio

ò  Writes back pages until it meets its goal or can’t write
more back

ò  (Some pages may be locked, just skip those)

ò  Same traversal as sync() + a count of written pages

ò  Usually quits earlier

9/18/12	

6	

How long dirty?

ò  Linux has some inode-specific bookkeeping about when
things were dirtied

ò  pdflush also checks for any inodes that have been dirty
longer than 30 seconds

ò  Writes these back even if quota was met

ò  Not the strongest guarantee I’ve ever seen…

But where to write?

ò  Ok, so I see how to find the dirty pages

ò  How does the kernel know where on disk to write them?

ò  And which disk for that matter?

ò  Superblock tracks device

ò  Inode tracks mapping from file offset to sector

Block size mismatch

ò  Most disks have 512 byte blocks; pages are generally 4K

ò  Some new “green” disks have 4K blocks

ò  Per page in cache – usually 8 disk blocks

ò  When blocks don’t match, what do we do?

ò  Simple answer: Just write all 8!

ò  But this is expensive – if only one block changed, we only
want to write one block back

Buffer head

ò  Simple idea: for every page backed by disk, store an extra
data structure for each disk block, called a buffer_head

ò  If a page stores 8 disk blocks, it has 8 buffer heads

ò  Example: write() system call for first 5 bytes

ò  Look up first page in radix tree

ò  Modify page, mark dirty

ò  Only mark first buffer head dirty

From “Understanding the
Linux Kernel”

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Storing Blocks in the Page Cache | 615

buffer page points to the buffer head of the first block in the page;* every buffer head
stores in the b_this_page field a pointer to the next buffer head in the list. Moreover,
every buffer head stores the address of the buffer page’s descriptor in the b_page field.
Figure 15-2 shows a buffer page containing four block buffers and the correspond-
ing buffer heads.

Allocating Block Device Buffer Pages
The kernel allocates a new block device buffer page when it discovers that the page
cache does not include a page containing the buffer for a given block (see the section
“Searching Blocks in the Page Cache” later in this chapter). In particular, the lookup
operation for the block might fail for the following reasons:

1. The radix tree of the block device does not include a page containing the data of
the block: in this case a new page descriptor must be added to the radix tree.

2. The radix tree of the block device includes a page containing the data of the block,
but this page is not a buffer page: in this case new buffer heads must be allocated
and linked to the page, thus transforming it into a block device buffer page.

3. The radix tree of the block device includes a buffer page containing the data of
the block, but the page has been split in blocks of size different from the size of
the requested block: in this case the old buffer heads must be released, and a
new set of buffer heads must be allocated and linked to the page.

* Because the private field contains valid data, the PG_private flag of the page is also set; hence, if the page
contains disk data and the PG_private flag is set, then the page is a buffer page. Notice, however, that other
kernel components not related to the block I/O subsystem use the private and PG_private fields for other
purposes.

Figure 15-2. A buffer page including four buffers and their buffer heads

Page descriptor

b_data
private
b_this_page

Buffer

Buffer

Buffer

Buffer

Page

Buffer head

Buffer head

Buffer head

Buffer head

b_page

More on buffer heads

ò  On write-back (sync, pdflush, etc), only write dirty buffer
heads

ò  To look up a given disk block for a file, must divide by
buffer heads per page

ò  Ex: disk block 25 of a file is in page 3 in the radix tree

ò  Note: memory mapped files mark all 8 buffer_heads
dirty. Why?

ò  Can only detect write regions via page faults

9/18/12	

7	

Summary

ò  Seen how mappings of files/disks to cache pages are
tracked

ò  And how dirty pages are tagged

ò  Radix tree basics

ò  When and how dirty data is written back to disk

ò  How difference between disk sector and page sizes are
handled

