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Today’s Lecture 
(kernel level mem. 

management) 

Recap of  previous lectures 

ò  Page tables: translate virtual addresses to physical 
addresses 

ò  VM Areas (Linux): track what should be mapped at in 
the virtual address space of  a process 

ò  Hoard/Linux slab: Efficient allocation of  objects from a 
superblock/slab of  pages 

Background 

ò  Lab2: Track physical pages with an array of  page structs 

ò  Contains reference counts 

ò  Free list layered over this array 

ò  Just like JOS, Linux represents physical memory with an 
array of  page structs 

ò  Obviously, not the exact same contents, but same idea 

ò  Pages can be allocated to processes, or to cache file data 
in memory 

Today’s Problem 

ò  Given a VMA or a file’s inode, how do I figure out 
which physical pages are storing its data?  

ò  Next lecture: We will go the other way, from a physical 
page back to the VMA or file inode 

The address space 
abstraction 

ò  Unifying abstraction: 

ò  Each file inode has an address space (0—file size) 

ò  So do block devices that cache data in RAM (0---dev size) 

ò  The (anonymous) virtual memory of  a process has an 
address space (0—4GB on x86) 

ò  In other words, all page mappings can be thought of  as 
and (object, offset) tuple 

ò  Make sense? 
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Address Spaces for: 

ò  VM Areas (VMAs) 

ò  Files 

Start Simple 

ò  “Anonymous” memory – no file backing it 

ò  E.g., the stack for a process 

ò  Not shared between processes 

ò  Will discuss sharing and swapping later 

ò  How do we figure out virtual to physical mapping? 

ò  Just walk the page tables! 

ò  Linux doesn’t do anything outside of  the page tables to 
track this mapping 

File mappings 

ò  A VMA can also represent a memory mapped file 

ò  The kernel can also map file pages to service read() or 
write() system calls 

ò  Goal: We only want to load a file into memory once! 

Logical View 

Disk 
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? 
Process A 

? 

Process B 
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VMA to a file 

ò  Also easy: VMA includes a file pointer and an offset into 
file 

ò  A VMA may map only part of  the file 

ò  Offset must be at page granularity 

ò  Anonymous mapping: file pointer is null 

ò  File pointer is an open file descriptor in the process file 
descriptor table 

ò  We will discuss file handles later 

Logical View 
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Tracking file pages 

ò  What data structure to use for a file? 

ò  No page tables for files 

ò  For example: What page stores the first 4k of  file “foo” 

ò  What data structure to use? 

ò  Hint: Files can be small, or very, very large 

The Radix Tree 

ò  A space-optimized trie 

ò  Trie: Rather than store entire key in each node, traversal of  
parent(s) builds a prefix, node just stores suffix 

ò  Especially useful for strings 

ò  Prefix less important for file offsets, but does bound key 
storage space 

ò  More important: A tree with a branching factor k > 2 

ò  Faster lookup for large files (esp. with tricks) 

ò  Note: Linux’s use of  the Radix tree is constrained 

A bit more detail 

ò  Assume an upper bound on file size when building the 
radix tree 

ò  Can rebuild later if  we are wrong 

ò  Specifically: Max size is 256k, branching factor (k) = 64 

ò  256k / 4k pages = 64 pages 

ò  So we need a radix tree of  height 1 to represent these 
pages 

Tree of  height 1 

ò  Root has 64 slots, can be null, or a pointer to a page 

ò  Lookup address X: 

ò  Shift off  low 12 bits (offset within page) 

ò  Use next 6 bits as an index into these slots (2^6 = 64) 

ò  If  pointer non-null, go to the child node (page) 

ò  If  null, page doesn’t exist 

Tree of  height n 

ò  Similar story: 

ò  Shift off  low 12 bits 

ò  At each child shift off  6 bits from middle (starting at 6 * (distance to the 
bottom – 1) bits) to find which of  the 64 potential children to go to 

ò  Use fixed height to figure out where to stop, which bits to use for offset 

ò  Observations: 

ò  “Key” at each node implicit based on position in tree 

ò  Lookup time constant in height of  tree 

ò  In a general-purpose radix tree, may have to check all k children, for higher 
lookup cost 

Fixed heights 

ò  If  the file size grows beyond max height, must grow the tree 

ò  Relatively simple: Add another root, previous tree becomes 
first child 

ò  Scaling in height: 

ò  1: 2^( (6*1) +12) = 256 KB 

ò  2: 2^( (6*2) + 12) = 16 MB 

ò  3: 2^( (6*3) + 12) = 1 GB 

ò  4: 2^( (6*4) + 12) = 16 GB 

ò  5: 2^( (6*5) + 12) = 4 TB 
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not NULL, and tags is a two-component array of flags that will be discussed in the sec-
tion “The Tags of the Radix Tree” later in this chapter. The root of the tree is repre-
sented by a radix_tree_root data structure, having three fields: height denotes the
current tree’s height (number of levels excluding the leaves), gfp_mask specifies the
flags used when requesting memory for a new node, and rnode points to the radix_
tree_node data structure corresponding to the node at level 1 of the tree (if any).

Let us consider a simple example. If none of the indices stored in the tree is greater
than 63, the tree height is equal to one, because the 64 potential leaves can all be
stored in the node at level 1 (see Figure 15-1 (a)). If, however, a new page descriptor
corresponding to index 131 must be stored in the page cache, the tree height is
increased to two, so that the radix tree can pinpoint indices up to 4095 (see
Figure 15-1(b)).

Table 15-3 shows the highest page index and the corresponding maximum file size
for each given height of the radix tree on a 32-bit architecture. In this case, the maxi-
mum height of a radix tree is six, although it is quite unlikely that the page cache of
your system will make use of a radix tree that huge. Because the page index is stored
in a 32-bit variable, when the tree has height equal to six, the node at the highest
level can have at most four children.

Figure 15-1. Two examples of a radix tree

(a) radix tree of height 1 (b) radix tree of height 2
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Back to address spaces 

ò  Each address space for a file cached in memory includes 
a radix tree 

ò  Radix tree is sparse: pages not in memory are missing 

ò  Radix tree also supports tags: such as dirty 

ò  A tree node is tagged if  at least one child also has the tag 

ò  Example: I tag a file page dirty 

ò  Must tag each parent in the radix tree as dirty 

ò  When I am finished writing page back, I must check all 
siblings; if  none dirty, clear the parent’s dirty tag 

Logical View 

Disk 

Hello! 

Foo.txt 
inode Process A 

Process B 

Process C 

Address Space 

Radix 
Tree 

Recap 

ò  Anonymous page: Just use the page tables 

ò  File-backed mapping 

ò  VMA -> open file descriptor-> inode 

ò  Inode -> address space (radix tree)-> page 

Problem 2: Dirty pages 

ò  Most OSes do not write file updates to disk immediately 

ò  (Later lecture) OS tries to optimize disk arm movement 

ò  OS instead tracks “dirty” pages 

ò  Ensures that write back isn’t delayed too long 

ò  Lest data be lost in a crash 

ò  Application can force immediate write back with sync 
system calls (and some open/mmap options) 

Sync system calls 

ò  sync() – Flush all dirty buffers to disk 

ò  fsync(fd) – Flush all dirty buffers associated with this file 
to disk (including changes to the inode) 

ò  fdatasync(fd) – Flush only dirty data pages for this file to 
disk 

ò  Don’t bother with the inode 
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How to implement sync? 

ò  Goal: keep overheads of  finding dirty blocks low 

ò  A naïve scan of  all pages would work, but expensive 

ò  Lots of  clean pages 

ò  Idea: keep track of  dirty data to minimize overheads 

ò  A bit of  extra work on the write path, of  course 

How to implement sync? 

ò  Background: Each file system has a super block 

ò  All super blocks in a list 

ò  Each super block keeps a list of  dirty inodes 

ò  Inodes and superblocks both marked dirty upon use 

FS Organization 

SB 
/ 

SB 
/floppy 

SB 
/d1 

One 
Superblock 

per FS 

inode 

Dirty list 

Dirty list of  
inodes 

Inodes and radix 
nodes/pages 
marked dirty 

separately 

Simple traversal 

for each s in superblock list: 

 if  (s->dirty) writeback s 

 for i in inode list: 

  if  (i->dirty) writeback i 

  if  (i->radix_root->dirty) : 

   // Recursively traverse tree writing  
   // dirty pages and clearing dirty flag  

Asynchronous flushing 

ò  Kernel thread(s): pdflush 

ò  A kernel thread is a task that only runs in the kernel’s 
address space 

ò  2-8 threads, depending on how busy/idle threads are 

ò  When pdflush runs, it is given a target number of  pages 
to write back 

ò  Kernel maintains a total number of  dirty pages 

ò  Administrator configures a target dirty ratio (say 10%) 

pdflush 

ò  When pdflush is scheduled, it figures out how many 
dirty pages are above the target ratio 

ò  Writes back pages until it meets its goal or can’t write 
more back 

ò  (Some pages may be locked, just skip those) 

ò  Same traversal as sync() + a count of  written pages 

ò  Usually quits earlier 
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How long dirty? 

ò  Linux has some inode-specific bookkeeping about when 
things were dirtied 

ò  pdflush also checks for any inodes that have been dirty 
longer than 30 seconds 

ò  Writes these back even if  quota was met 

ò  Not the strongest guarantee I’ve ever seen… 

But where to write? 

ò  Ok, so I see how to find the dirty pages 

ò  How does the kernel know where on disk to write them? 

ò  And which disk for that matter? 

ò  Superblock tracks device 

ò  Inode tracks mapping from file offset to sector 

Block size mismatch 

ò  Most disks have 512 byte blocks; pages are generally 4K 

ò  Some new “green” disks have 4K blocks 

ò  Per page in cache – usually 8 disk blocks 

ò  When blocks don’t match, what do we do? 

ò  Simple answer: Just write all 8! 

ò  But this is expensive – if  only one block changed, we only 
want to write one block back 

Buffer head 

ò  Simple idea: for every page backed by disk, store an extra 
data structure for each disk block, called a buffer_head 

ò  If  a page stores 8 disk blocks, it has 8 buffer heads 

ò  Example: write() system call for first 5 bytes 

ò  Look up first page in radix tree 

ò  Modify page, mark dirty 

ò  Only mark first buffer head dirty 

From “Understanding the 
Linux Kernel” 
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buffer page points to the buffer head of the first block in the page;* every buffer head
stores in the b_this_page field a pointer to the next buffer head in the list. Moreover,
every buffer head stores the address of the buffer page’s descriptor in the b_page field.
Figure 15-2 shows a buffer page containing four block buffers and the correspond-
ing buffer heads.

Allocating Block Device Buffer Pages
The kernel allocates a new block device buffer page when it discovers that the page
cache does not include a page containing the buffer for a given block (see the section
“Searching Blocks in the Page Cache” later in this chapter). In particular, the lookup
operation for the block might fail for the following reasons:

1. The radix tree of the block device does not include a page containing the data of
the block: in this case a new page descriptor must be added to the radix tree.

2. The radix tree of the block device includes a page containing the data of the block,
but this page is not a buffer page: in this case new buffer heads must be allocated
and linked to the page, thus transforming it into a block device buffer page.

3. The radix tree of the block device includes a buffer page containing the data of
the block, but the page has been split in blocks of size different from the size of
the requested block: in this case the old buffer heads must be released, and a
new set of buffer heads must be allocated and linked to the page.

* Because the private field contains valid data, the PG_private flag of the page is also set; hence, if the page
contains disk data and the PG_private flag is set, then the page is a buffer page. Notice, however, that other
kernel components not related to the block I/O subsystem use the private and PG_private fields for other
purposes.

Figure 15-2. A buffer page including four buffers and their buffer heads
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More on buffer heads 

ò  On write-back (sync, pdflush, etc), only write dirty buffer 
heads 

ò  To look up a given disk block for a file, must divide by 
buffer heads per page 

ò  Ex: disk block 25 of  a file is in page 3 in the radix tree 

ò  Note: memory mapped files mark all 8 buffer_heads 
dirty.  Why? 

ò  Can only detect write regions via page faults 
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Summary 

ò  Seen how mappings of  files/disks to cache pages are 
tracked 

ò  And how dirty pages are tagged 

ò  Radix tree basics 

ò  When and how dirty data is written back to disk 

ò  How difference between disk sector and page sizes are 
handled 


