Native POSIX Thread
Library (NPTL)

CSE 506
Don Porter



Logical Diagram

Memory S e —
Management | Scheduler B8

!
i
>N

Interrupts Consistency



Today’s reading

+ Design challenges and trade-offs in a threading library
+ Nice practical tricks and system details

+ And some historical perspective on Linux evolution



Threading review

+ What 1s threading?

Multiple threads of execution in one address space
x86 hardware:

+ One cr3 register and set of page tables shared by 2+
different register contexts otherwise (rip, rsp/stack, etc.)

Linux:
+ One mm_struct shared by several task_structs

Does JOS support threading?



Ok, but what 1s a thread
library?

Kernel provides basic functionality: e.g., create a new
task with a shared address space, set my gs register

In Linux, libpthread provides several abstractions for
programmer convenience. Examples?
Thread management (join, cleanup, etc)
Synchronization (mutex, condition variables, etc)
Thread-local storage

Part of the design 1s a division of labor between kernel
and libraries!



User vs. Kernel Threading

+ Kernel threading: Every application-level thread is
implemented by a kernel-visible thread (task struct)

Called 1:1 in the paper

+ User threading: Multiple application-level threads (m)
multiplexed on n kernel-visible threads (m >= n)

Called m:n in the paper

Insight: Context switching involves saving/restoring
registers (including stack).

+ This can be done in user space too!



Intuition

+ 2 user threads on 1 kernel thread; start with explicit yield

2 stacks
On each yield():

+ Save registers, switch stacks just like kernel does

<+ OS schedules the one kernel thread

Programmer controls how much time for each user thread



Extensions

+ Can map m user threads onto n kernel threads (m >= n)

Bookkeeping gets much more complicated
(synchronization)

+ Can do crude preemption using:

Certain functions (locks)

Timer signals from OS



+ Context switching overheads

+ Finer-grained scheduling control

-+ Blocking I/0

Why bother?




Context Switching
Overheads

+ Recall: Forking a thread halves your time slice

Takes a few hundred cycles to get in/out of kernel
+ Plus cost of switching a thread

Time in the scheduler counts against your timeslice

<+ 2 threads, 1 CPU

If I can run the context switching code locally (avoiding
trap overheads, etc), my threads get to run slightly longer!

Stack switching code works 1n userspace with few changes



Finer-Grained Scheduling
Control

+ Example: Thread 1 has a lock, Thread 2 waiting for lock

Thread 1’s quantum expired
Thread 2 just spinning until its quantum expires

Wouldn'’t 1t be nice to donate Thread 2’s quantum to
Thread 17

+ Both threads will make faster progress!

+ Similar problems with producer/consumer, barriers, etc.

+ Deeper problem: Application’s data flow and
synchronization patterns hard for kernel to infer



Blocking I/0

+ I have 2 threads, they each get half of the application’s
quantum
If A blocks on I/0 and B 1s using the CPU
B gets half the CPU time
A’s quantum 1s “lost” (at least in some schedulers)

<+ Modern Linux scheduler:

A gets a priority boost

Maybe application cares more about B’s CPU time...



Blocking I/0 and Events

+ Events are an abstraction for dealing with blocking I/0
+ Layered over a user-level scheduler

+ Lots of literature on this topic if you are interested...



Scheduler Activations

+ Observations:
Kernel context switching substantially more expensive
than user context switching
Kernel can’t infer application goals as well as programmer

+ nice() helps, but clumsy

+ Thesis: Highly tuned multithreading should be done 1n
the application

Better kernel interfaces needed



What 1s a scheduler
activation?

<+ Like a kernel thread: a kernel stack and a user-mode stack

Represents the allocation of a CPU time slice

4+ Not like a kernel thread:

Does not automatically resume a user thread
Goes to one of a few well-defined “upcalls”
+ New timeslice, Timeslice expired, Blocked SA, Unblocked SA

+ Upcalls must be reentrant (called on many CPUs at same time)

User scheduler decides what to run



User-level threading

+ Independent of SA’s, user scheduler creates:

Analog of task struct for each thread

+ Stores register state when preempted

Stack for each thread

Some sort of run queue

+ Simple list in the (optional) paper

+ Application free to use O(1), CFS, round-robin, etc.

+ User scheduler keeps kernel notified of how many
runnable tasks it has (via system call)



Downsides of scheduler
activations

+ A random user thread gets preempted on every
scheduling-related event

Not free!

User scheduling must do better than kernel by a big
enough margin to offset these overheads

+ Moreover, the most important thread may be the one to
get preempted, slowing down critical path

Potential optimization: communicate to kernel a
preference for which activation gets preempted to notify of
an event



Back to NPTL

+ Ultimately, a 1:1 model was adopted by Linux.
+ Why?

Higher context switching overhead (lots of register
copying and upcalls)

Difference of opinion between research and kernel
communities about how 1nefficient kernel-level schedulers
are. (claims about O(1) scheduling)

Way more complicated to maintain the code for m:n
model. Much to be said for encapsulating kernel from
thread library!



Meta-observation

Much of 90s OS research focused on giving
programmers more control over performance

E.g., microkernels, extensible OSes, etc.

Argument: clumsy heuristics or awkward abstractions
are keeping me from getting full performance of my
hardware

Some won the day, some didn’t

High-performance databases generally get direct control
over disk(s) rather than go through the file system



User-threading 1n practice

+ Has come in and out of vogue

Correlated with how efficiently the OS creates and context
switches threads

+ Linux 2.4 — Threading was really slow

User-level thread packages were hot

+ Linux 2.6 — Substantial effort went into tuning threads

E.g., Most JVMs abandoned user-threads



Other 1ssues to cover

+ Signaling

Correctness
Performance (Synchronization)

+ Manager thread
+ List of all threads

+ Other miscellaneous optimizations



Brief digression: Signals

+ Signals are like a user-level interrupt

Specify a signal handler (trap handler), different numbers have
different meanings

Default actions for different signals (kill the process, ignore, etc).

+ Delivered when returning from the kernel

E.g., after returning from a system call

+ Can be sent by hand using the kill command

kill -HUP 10293 # send SIGHUP to proc. 10293



Signal masking

+ Like interrupts, signals can be masked

See the sigprocmask system call on Linux
+ Why?
User code may need to synchronize access to a data
structure shared with a signal handler
Or multiple signal handlers may need to synchronize

See optional reading on signal races for an example



What was all the fuss
about signals?

< 2 1ssues:

The behavior of sending a signal to a multi-threaded

process was not correct. And could never be implemented
correctly with kernel-level tools (pre 2.6)

+ Correctness: Cannot implement POSIX standard

Signals were also used to implement blocking
synchronization. E.g., releasing a mutex meant sending a
signal to the next blocked task to wake it up.

+ Performance: Ridiculously complicated and inefficient



Issue 1: Signal correctness
w/ threads

+ Mostly solved by kernel assigning same PID to each thread

2.4 assigned different PID to each thread
Different TID to distinguish them
+ Problem with different PID?
POSIX says I should be able to send a signal to a multi-threaded

program and any unmasked thread will get the signal, even if the
first thread has exited

+ To deliver a signal kernel has to search each task in the
process for an unmasked thread



Issue 2: Performance

+ Solved by adoption of futexes
+ Essentially just a shared wait queue in the kernel

<+ Idea:

Use an atomic instruction in user space to implement fast path
for a lock (more 1n later lectures)

If task needs to block, ask the kernel to put you on a given futex
wait queue

Task that releases the lock wakes up next task on the futex wait
queue

+ See optional reading on futexes for more details



Manager Thread

+ A lot of coordination (using signals) had to go through a
manager thread
E.g., cleaning up stacks of dead threads

Scalability bottleneck
+ Mostly eliminated with tweaks to kernel that facilitate
decentralization:

The kernel handled several termination edge cases for
threads

Kernel would write to a given memory location to allow
lazy cleanup of per-thread data



List of all threads

+ A pain to maintain

+ Mostly eliminated, but still needed to eliminate some
leaks 1n fork

+ Generation counter 1s a useful trick for lazy deletion

Used in many systems

Idea: Transparently replace key “Foo” with “Foo:0”.
Upon deletion, require next creation to rename “Foo” to
“Foo:1”. Eliminates accidental use of stale data.



Other misc. optimizations

+ On super-computers, were hitting the 8k limit on
segment descriptors

<+ Where does the 8k limit come from?

Bits in the segment descriptor. Hardware-level limit
+ How solved?

Essentially, kernel scheduler swaps them out if needed
Is this the common case?
No, expect 8k to be enough



Optimizations

+ Optimized exit performance for 100k threads from 15
minutes to 2 seconds!

+ PID space increased to 2 billion threads

/proc file system able to handle more than 64k processes



Results

oD e@o

+ Big speedups! Yay!




Summary

+ Nice paper on the practical concerns and trade-offs 1n
building a threading library

I enjoyed this reading very much

<+ Understand 1:1 vs. m:n model

User vs. kernel-level threading

+ Understand other key implementation i1ssues discussed in
the paper



