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Today’s reading 

ò  Design challenges and trade-offs in a threading library 

ò  Nice practical tricks and system details 

ò  And some historical perspective on Linux evolution 

Threading review 

ò  What is threading? 

ò  Multiple threads of  execution in one address space 

ò  x86 hardware:  

ò  One cr3 register and set of  page tables shared by 2+ 
different register contexts otherwise (rip, rsp/stack, etc.) 

ò  Linux: 

ò  One mm_struct shared by several task_structs 

ò  Does JOS support threading? 

Ok, but what is a thread 
library? 

ò  Kernel provides basic functionality: e.g., create a new 
task with a shared address space, set my gs register 

ò  In Linux, libpthread provides several abstractions for 
programmer convenience.  Examples? 

ò  Thread management (join, cleanup, etc) 

ò  Synchronization (mutex, condition variables, etc) 

ò  Thread-local storage 

ò  Part of  the design is a division of  labor between kernel 
and libraries! 

User vs. Kernel Threading 

ò  Kernel threading: Every application-level thread is 
implemented by a kernel-visible thread (task struct) 

ò  Called 1:1 in the paper 

ò  User threading: Multiple application-level threads (m) 
multiplexed on n kernel-visible threads (m >= n) 

ò  Called m:n in the paper 

ò  Insight: Context switching involves saving/restoring 
registers (including stack).   

ò  This can be done in user space too! 
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Intuition 

ò  2 user threads on 1 kernel thread; start with explicit yield 

ò  2 stacks 

ò  On each yield(): 

ò  Save registers, switch stacks just like kernel does 

ò  OS schedules the one kernel thread 

ò  Programmer controls how much time for each user thread  

Extensions 

ò  Can map m user threads onto n kernel threads (m >= n) 

ò  Bookkeeping gets much more complicated 
(synchronization) 

ò  Can do crude preemption using: 

ò  Certain functions (locks) 

ò  Timer signals from OS 

Why bother? 

ò  Context switching overheads 

ò  Finer-grained scheduling control 

ò  Blocking I/O 

Context Switching 
Overheads 

ò  Recall: Forking a thread halves your time slice 

ò  Takes a few hundred cycles to get in/out of  kernel 

ò  Plus cost of  switching a thread 

ò  Time in the scheduler counts against your timeslice 

ò  2 threads, 1 CPU 

ò  If  I can run the context switching code locally (avoiding 
trap overheads, etc), my threads get to run slightly longer! 

ò  Stack switching code works in userspace with few changes 

Finer-Grained Scheduling 
Control 

ò  Example: Thread 1 has a lock, Thread 2 waiting for lock 

ò  Thread 1’s quantum expired 

ò  Thread 2 just spinning until its quantum expires 

ò  Wouldn’t it be nice to donate Thread 2’s quantum to 
Thread 1? 
ò  Both threads will make faster progress! 

ò  Similar problems with producer/consumer, barriers, etc. 

ò  Deeper problem: Application’s data flow and 
synchronization patterns hard for kernel to infer 

Blocking I/O 

ò  I have 2 threads, they each get half  of  the application’s 
quantum 

ò  If  A blocks on I/O and B is using the CPU 

ò  B gets half  the CPU time 

ò  A’s quantum is “lost” (at least in some schedulers) 

ò  Modern Linux scheduler: 

ò  A gets a priority boost 

ò  Maybe application cares more about B’s CPU time… 
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Blocking I/O and Events 

ò  Events are an abstraction for dealing with blocking I/O 

ò  Layered over a user-level scheduler 

ò  Lots of  literature on this topic if  you are interested… 

Scheduler Activations 

ò  Observations:  

ò  Kernel context switching substantially more expensive 
than user context switching 

ò  Kernel can’t infer application goals as well as programmer 

ò  nice() helps, but clumsy 

ò  Thesis: Highly tuned multithreading should be done in 
the application 

ò  Better kernel interfaces needed 

What is a scheduler 
activation? 

ò  Like a kernel thread: a kernel stack and a user-mode stack 

ò  Represents the allocation of  a CPU time slice 

ò  Not like a kernel thread: 

ò  Does not automatically resume a user thread 

ò  Goes to one of  a few well-defined “upcalls” 

ò  New timeslice, Timeslice expired, Blocked SA, Unblocked SA 

ò  Upcalls must be reentrant (called on many CPUs at same time) 

ò  User scheduler decides what to run 

User-level threading 

ò  Independent of  SA’s, user scheduler creates: 

ò  Analog of  task struct for each thread 

ò  Stores register state when preempted 

ò  Stack for each thread 

ò  Some sort of  run queue 
ò  Simple list in the (optional) paper 

ò  Application free to use O(1), CFS, round-robin, etc. 

ò  User scheduler keeps kernel notified of  how many 
runnable tasks it has (via system call) 

Downsides of  scheduler 
activations 

ò  A random user thread gets preempted on every 
scheduling-related event 

ò  Not free! 

ò  User scheduling must do better than kernel by a big 
enough margin to offset these overheads 

ò  Moreover, the most important thread may be the one to 
get preempted, slowing down critical path 

ò  Potential optimization: communicate to kernel a 
preference for which activation gets preempted to notify of  
an event 

Back to NPTL 

ò  Ultimately, a 1:1 model was adopted by Linux.  

ò  Why? 

ò  Higher context switching overhead (lots of  register 
copying and upcalls) 

ò  Difference of  opinion between research and kernel 
communities about how inefficient kernel-level schedulers 
are.  (claims about O(1) scheduling) 

ò  Way more complicated to maintain the code for m:n 
model.  Much to be said for encapsulating kernel from 
thread library! 
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Meta-observation 

ò  Much of  90s OS research focused on giving 
programmers more control over performance 

ò  E.g., microkernels, extensible OSes, etc. 

ò  Argument: clumsy heuristics or awkward abstractions 
are keeping me from getting full performance of  my 
hardware 

ò  Some won the day, some didn’t 

ò  High-performance databases generally get direct control 
over disk(s) rather than go through the file system 

User-threading in practice 

ò  Has come in and out of  vogue 

ò  Correlated with how efficiently the OS creates and context 
switches threads 

ò  Linux 2.4 – Threading was really slow 

ò  User-level thread packages were hot 

ò  Linux 2.6 – Substantial effort went into tuning threads 

ò  E.g., Most JVMs abandoned user-threads 

Other issues to cover 

ò  Signaling 

ò  Correctness 

ò  Performance (Synchronization) 

ò  Manager thread 

ò  List of  all threads 

ò  Other miscellaneous optimizations 

Brief  digression: Signals 

ò  Signals are like a user-level interrupt 

ò  Specify a signal handler (trap handler), different numbers have 
different meanings 

ò  Default actions for different signals (kill the process, ignore, etc). 

ò  Delivered when returning from the kernel  

ò  E.g., after returning from a system call 

ò  Can be sent by hand using the kill command 

ò  kill -HUP 10293 # send SIGHUP to proc. 10293  

Signal masking 

ò  Like interrupts, signals can be masked 

ò  See the sigprocmask system call on Linux 

ò  Why? 

ò  User code may need to synchronize access to a data 
structure shared with a signal handler 

ò  Or multiple signal handlers may need to synchronize 

ò  See optional reading on signal races for an example 

What was all the fuss 
about signals? 

ò  2 issues: 

1)  The behavior of  sending a signal to a multi-threaded 
process was not correct.  And could never be implemented 
correctly with kernel-level tools (pre 2.6) 

ò  Correctness: Cannot implement POSIX standard 

2)  Signals were also used to implement blocking 
synchronization.  E.g., releasing a mutex meant sending a 
signal to the next blocked task to wake it up.   

ò  Performance: Ridiculously complicated and inefficient 
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Issue 1: Signal correctness 
w/ threads 

ò  Mostly solved by kernel assigning same PID to each thread 

ò  2.4 assigned different PID to each thread 

ò  Different TID to distinguish them 

ò  Problem with different PID? 

ò  POSIX says I should be able to send a signal to a multi-threaded 
program and any unmasked thread will get the signal, even if  the 
first thread has exited 

ò  To deliver a signal kernel has to search each task in the 
process for an unmasked thread 

Issue 2: Performance 

ò  Solved by adoption of  futexes 

ò  Essentially just a shared wait queue in the kernel 

ò  Idea:  

ò  Use an atomic instruction in user space to implement fast path 
for a lock (more in later lectures) 

ò  If  task needs to block, ask the kernel to put you on a given futex 
wait queue 

ò  Task that releases the lock wakes up next task on the futex wait 
queue 

ò  See optional reading on futexes for more details 

Manager Thread 

ò  A lot of  coordination (using signals) had to go through a 
manager thread 

ò  E.g., cleaning up stacks of  dead threads 

ò  Scalability bottleneck 

ò  Mostly eliminated with tweaks to kernel that facilitate 
decentralization: 

ò  The kernel handled several termination edge cases for 
threads 

ò  Kernel would write to a given memory location to allow 
lazy cleanup of  per-thread data 

List of  all threads 

ò  A pain to maintain 

ò  Mostly eliminated, but still needed to eliminate some 
leaks in fork 

ò  Generation counter is a useful trick for lazy deletion 

ò  Used in many systems 

ò  Idea: Transparently replace key “Foo” with “Foo:0”.  
Upon deletion, require next creation to rename “Foo” to 
“Foo:1”.  Eliminates accidental use of  stale data. 

Other misc. optimizations 

ò  On super-computers, were hitting the 8k limit on 
segment descriptors 

ò  Where does the 8k limit come from? 

ò  Bits in the segment descriptor.  Hardware-level limit 

ò  How solved? 

ò  Essentially, kernel scheduler swaps them out if  needed 

ò  Is this the common case? 

ò  No, expect 8k to be enough 

Optimizations 

ò  Optimized exit performance for 100k threads from 15 
minutes to 2 seconds! 

ò  PID space increased to 2 billion threads 

ò  /proc file system able to handle more than 64k processes 
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Results 

ò  Big speedups!  Yay! 

Summary 

ò  Nice paper on the practical concerns and trade-offs in 
building a threading library 

ò  I enjoyed this reading very much 

ò  Understand 1:1 vs. m:n model 

ò  User vs. kernel-level threading 

ò  Understand other key implementation issues discussed in 
the paper 


