
10/4/12	

1	

Native POSIX Thread
Library (NPTL)

CSE 506
Don Porter

Logical Diagram

Memory
Management

CPU
Scheduler

User

Kernel

Hardware

Binary
Formats

Consistency

System Calls

Interrupts Disk Net

RCU File System

Device
Drivers

Networking Sync

Memory
Allocators Threads

Today’s Lecture
Scheduling

threads

Today’s reading

ò  Design challenges and trade-offs in a threading library

ò  Nice practical tricks and system details

ò  And some historical perspective on Linux evolution

Threading review

ò  What is threading?

ò  Multiple threads of execution in one address space

ò  x86 hardware:

ò  One cr3 register and set of page tables shared by 2+
different register contexts otherwise (rip, rsp/stack, etc.)

ò  Linux:

ò  One mm_struct shared by several task_structs

ò  Does JOS support threading?

Ok, but what is a thread
library?

ò  Kernel provides basic functionality: e.g., create a new
task with a shared address space, set my gs register

ò  In Linux, libpthread provides several abstractions for
programmer convenience. Examples?

ò  Thread management (join, cleanup, etc)

ò  Synchronization (mutex, condition variables, etc)

ò  Thread-local storage

ò  Part of the design is a division of labor between kernel
and libraries!

User vs. Kernel Threading

ò  Kernel threading: Every application-level thread is
implemented by a kernel-visible thread (task struct)

ò  Called 1:1 in the paper

ò  User threading: Multiple application-level threads (m)
multiplexed on n kernel-visible threads (m >= n)

ò  Called m:n in the paper

ò  Insight: Context switching involves saving/restoring
registers (including stack).

ò  This can be done in user space too!

10/4/12	

2	

Intuition

ò  2 user threads on 1 kernel thread; start with explicit yield

ò  2 stacks

ò  On each yield():

ò  Save registers, switch stacks just like kernel does

ò  OS schedules the one kernel thread

ò  Programmer controls how much time for each user thread

Extensions

ò  Can map m user threads onto n kernel threads (m >= n)

ò  Bookkeeping gets much more complicated
(synchronization)

ò  Can do crude preemption using:

ò  Certain functions (locks)

ò  Timer signals from OS

Why bother?

ò  Context switching overheads

ò  Finer-grained scheduling control

ò  Blocking I/O

Context Switching
Overheads

ò  Recall: Forking a thread halves your time slice

ò  Takes a few hundred cycles to get in/out of kernel

ò  Plus cost of switching a thread

ò  Time in the scheduler counts against your timeslice

ò  2 threads, 1 CPU

ò  If I can run the context switching code locally (avoiding
trap overheads, etc), my threads get to run slightly longer!

ò  Stack switching code works in userspace with few changes

Finer-Grained Scheduling
Control

ò  Example: Thread 1 has a lock, Thread 2 waiting for lock

ò  Thread 1’s quantum expired

ò  Thread 2 just spinning until its quantum expires

ò  Wouldn’t it be nice to donate Thread 2’s quantum to
Thread 1?
ò  Both threads will make faster progress!

ò  Similar problems with producer/consumer, barriers, etc.

ò  Deeper problem: Application’s data flow and
synchronization patterns hard for kernel to infer

Blocking I/O

ò  I have 2 threads, they each get half of the application’s
quantum

ò  If A blocks on I/O and B is using the CPU

ò  B gets half the CPU time

ò  A’s quantum is “lost” (at least in some schedulers)

ò  Modern Linux scheduler:

ò  A gets a priority boost

ò  Maybe application cares more about B’s CPU time…

10/4/12	

3	

Blocking I/O and Events

ò  Events are an abstraction for dealing with blocking I/O

ò  Layered over a user-level scheduler

ò  Lots of literature on this topic if you are interested…

Scheduler Activations

ò  Observations:

ò  Kernel context switching substantially more expensive
than user context switching

ò  Kernel can’t infer application goals as well as programmer

ò  nice() helps, but clumsy

ò  Thesis: Highly tuned multithreading should be done in
the application

ò  Better kernel interfaces needed

What is a scheduler
activation?

ò  Like a kernel thread: a kernel stack and a user-mode stack

ò  Represents the allocation of a CPU time slice

ò  Not like a kernel thread:

ò  Does not automatically resume a user thread

ò  Goes to one of a few well-defined “upcalls”

ò  New timeslice, Timeslice expired, Blocked SA, Unblocked SA

ò  Upcalls must be reentrant (called on many CPUs at same time)

ò  User scheduler decides what to run

User-level threading

ò  Independent of SA’s, user scheduler creates:

ò  Analog of task struct for each thread

ò  Stores register state when preempted

ò  Stack for each thread

ò  Some sort of run queue
ò  Simple list in the (optional) paper

ò  Application free to use O(1), CFS, round-robin, etc.

ò  User scheduler keeps kernel notified of how many
runnable tasks it has (via system call)

Downsides of scheduler
activations

ò  A random user thread gets preempted on every
scheduling-related event

ò  Not free!

ò  User scheduling must do better than kernel by a big
enough margin to offset these overheads

ò  Moreover, the most important thread may be the one to
get preempted, slowing down critical path

ò  Potential optimization: communicate to kernel a
preference for which activation gets preempted to notify of
an event

Back to NPTL

ò  Ultimately, a 1:1 model was adopted by Linux.

ò  Why?

ò  Higher context switching overhead (lots of register
copying and upcalls)

ò  Difference of opinion between research and kernel
communities about how inefficient kernel-level schedulers
are. (claims about O(1) scheduling)

ò  Way more complicated to maintain the code for m:n
model. Much to be said for encapsulating kernel from
thread library!

10/4/12	

4	

Meta-observation

ò  Much of 90s OS research focused on giving
programmers more control over performance

ò  E.g., microkernels, extensible OSes, etc.

ò  Argument: clumsy heuristics or awkward abstractions
are keeping me from getting full performance of my
hardware

ò  Some won the day, some didn’t

ò  High-performance databases generally get direct control
over disk(s) rather than go through the file system

User-threading in practice

ò  Has come in and out of vogue

ò  Correlated with how efficiently the OS creates and context
switches threads

ò  Linux 2.4 – Threading was really slow

ò  User-level thread packages were hot

ò  Linux 2.6 – Substantial effort went into tuning threads

ò  E.g., Most JVMs abandoned user-threads

Other issues to cover

ò  Signaling

ò  Correctness

ò  Performance (Synchronization)

ò  Manager thread

ò  List of all threads

ò  Other miscellaneous optimizations

Brief digression: Signals

ò  Signals are like a user-level interrupt

ò  Specify a signal handler (trap handler), different numbers have
different meanings

ò  Default actions for different signals (kill the process, ignore, etc).

ò  Delivered when returning from the kernel

ò  E.g., after returning from a system call

ò  Can be sent by hand using the kill command

ò  kill -HUP 10293 # send SIGHUP to proc. 10293

Signal masking

ò  Like interrupts, signals can be masked

ò  See the sigprocmask system call on Linux

ò  Why?

ò  User code may need to synchronize access to a data
structure shared with a signal handler

ò  Or multiple signal handlers may need to synchronize

ò  See optional reading on signal races for an example

What was all the fuss
about signals?

ò  2 issues:

1)  The behavior of sending a signal to a multi-threaded
process was not correct. And could never be implemented
correctly with kernel-level tools (pre 2.6)

ò  Correctness: Cannot implement POSIX standard

2)  Signals were also used to implement blocking
synchronization. E.g., releasing a mutex meant sending a
signal to the next blocked task to wake it up.

ò  Performance: Ridiculously complicated and inefficient

10/4/12	

5	

Issue 1: Signal correctness
w/ threads

ò  Mostly solved by kernel assigning same PID to each thread

ò  2.4 assigned different PID to each thread

ò  Different TID to distinguish them

ò  Problem with different PID?

ò  POSIX says I should be able to send a signal to a multi-threaded
program and any unmasked thread will get the signal, even if the
first thread has exited

ò  To deliver a signal kernel has to search each task in the
process for an unmasked thread

Issue 2: Performance

ò  Solved by adoption of futexes

ò  Essentially just a shared wait queue in the kernel

ò  Idea:

ò  Use an atomic instruction in user space to implement fast path
for a lock (more in later lectures)

ò  If task needs to block, ask the kernel to put you on a given futex
wait queue

ò  Task that releases the lock wakes up next task on the futex wait
queue

ò  See optional reading on futexes for more details

Manager Thread

ò  A lot of coordination (using signals) had to go through a
manager thread

ò  E.g., cleaning up stacks of dead threads

ò  Scalability bottleneck

ò  Mostly eliminated with tweaks to kernel that facilitate
decentralization:

ò  The kernel handled several termination edge cases for
threads

ò  Kernel would write to a given memory location to allow
lazy cleanup of per-thread data

List of all threads

ò  A pain to maintain

ò  Mostly eliminated, but still needed to eliminate some
leaks in fork

ò  Generation counter is a useful trick for lazy deletion

ò  Used in many systems

ò  Idea: Transparently replace key “Foo” with “Foo:0”.
Upon deletion, require next creation to rename “Foo” to
“Foo:1”. Eliminates accidental use of stale data.

Other misc. optimizations

ò  On super-computers, were hitting the 8k limit on
segment descriptors

ò  Where does the 8k limit come from?

ò  Bits in the segment descriptor. Hardware-level limit

ò  How solved?

ò  Essentially, kernel scheduler swaps them out if needed

ò  Is this the common case?

ò  No, expect 8k to be enough

Optimizations

ò  Optimized exit performance for 100k threads from 15
minutes to 2 seconds!

ò  PID space increased to 2 billion threads

ò  /proc file system able to handle more than 64k processes

10/4/12	

6	

Results

ò  Big speedups! Yay!

Summary

ò  Nice paper on the practical concerns and trade-offs in
building a threading library

ò  I enjoyed this reading very much

ò  Understand 1:1 vs. m:n model

ò  User vs. kernel-level threading

ò  Understand other key implementation issues discussed in
the paper

