

Networking (2 parts)

- ♦ Goals:
 - * Review networking basics
 - ♦ Discuss APIs
 - Trace how a packet gets from the network device to the application (and back)
 - * Understand Receive livelock and NAPI

4 to 7 layer diagram (from Understanding Linux Network Internals) 7 Application 6 Presentation 5 Session 4 Transport 3 Network 3 Network 1 Physical 1/2 Hots-to-network (fithemet. . .) 061 Figure 13-1. OSI and TCP/IP models

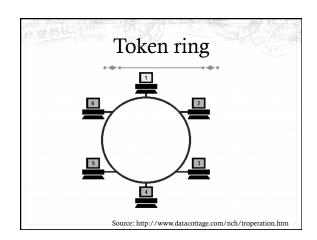
Nomenclature

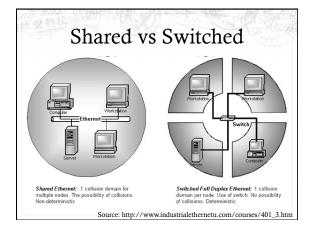
- + Frame: hardware
- ♦ Packet: IP
- ♦ Segment: TCP/UDP
- * Message: Application

TCP/IP Reality

- * The OSI model is great for undergrad courses
- * TCP/IP (or UDP) is what the majority of programs use
 - ✦ Some random things (like networked disks) just use ethernet + some custom protocols

Ethernet (or 802.2 or 802.3)


- * All slight variations on a theme (3 different standards)
- * Simple packet layout:
 - Header: Type, source MAC address, destination MAC address, length, (and a few other fields)
 - * Data block (payload)
 - ♦ Checksum
- + Higher-level protocols "nested" inside payload
- + "Unreliable" no guarantee a packet will be delivered


Ethernet History

- ♦ Originally designed for a shared wire (e.g., coax cable)
- * Each device listens to all traffic
 - ♦ Hardware filters out traffic intended for other hosts
 - + I.e., different destination MAC address
 - * Can be put in "promiscuous" mode, and record everything (called a network sniffer)
- Sending: Device hardware automatically detects if another device is sending at same time
 - * Random back-off and retry

Early competition

- + Token-ring network: Devices passed a "token" around
 - → Device with the token could send; all others listened
 - ♦ Like the "talking stick" in a kindergarten class
- Send latencies increased proportionally to the number of hosts on the network
 - Even if they weren't sending anything (still have to pass the token)
- Ethernet has better latency under low contention and better throughput under high

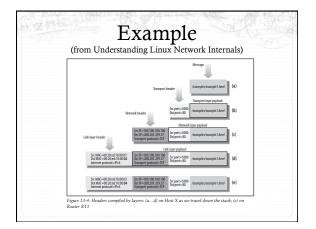
Switched networks

- * Modern ethernets are switched
- ♦ What is a hub vs. a switch?
 - * Both are a box that links multiple computers together
 - Hubs broadcast to all plugged-in computers (let computers filter traffic)
 - * Switches track who is plugged in, only send to expected recipient
 - ♦ Makes sniffing harder ⊗

Internet Protocol (IP)

- * 2 flavors: Version 4 and 6
 - ♦ Version 4 widely used in practice---today's focus
- Provides a network-wide unique device address (IP address)
- This layer is responsible for routing data across multiple ethernet networks on the internet
 - Ethernet packet specifies its payload is IP
 - At each router, payload is copied into a new point-to-point ethernet frame and sent along

Transmission Control Protocol (TCP)


- Higher-level protocol that layers end-to-end reliability, transparent to applications
 - Lots of packet acknowledgement messages, sequence numbers, automatic retry, etc.
 - ♦ Pretty complicated
- * Applications on a host are assigned a port number
 - * A simple integer from 0-64k
 - * Multiplexes many applications on one device
 - ♦ Ports below 1k reserved for privileged applications

User Datagram Protocol (UDP)

- * The simple alternative to TCP
 - * None of the frills (no reliability guarantees)
- ♦ Same port abstraction (1-64k)
 - ♦ But different ports
 - ♦ I.e., TCP port 22 isn't the same port as UDP port 22

Some well-known ports

- + 80 http
- ♦ 22 ssh
- ♦ 25 SMTP

Networking APIs

- * Programmers rarely create ethernet frames
- * Most applications use the **socket** abstraction
 - $\begin{tabular}{ll} \star & Stream of messages or bytes between two applications \\ \end{tabular}$
 - $\begin{tabular}{ll} \bigstar & Applications still specify: protocol (TCP vs. UDP), remote host address \end{tabular}$
 - Whether reads should return a stream of bytes or distinct messages
- * While many low-level details are abstracted, programmers must understand basics of low-level protocols

Sockets, cont.

- * One application is the **server**, or **listens** on a predetermined port for new connections
- The client connects to the server to create a message channel
- The server accepts the connection, and they begin exchanging messages

Creation APIs

- int socket(domain, type, protocol) create a file handle representing the communication endpoint
 - * Domain is usually AF_INET (IP4), many other choices
 - * Type can be STREAM, DGRAM, RAW
 - ♦ Protocol usually 0
- int bind(fd, addr, addrlen) bind this socket to a specific port, specified by addr
 - ♦ Can be INADDR_ANY (don't care what port)

Server APIs

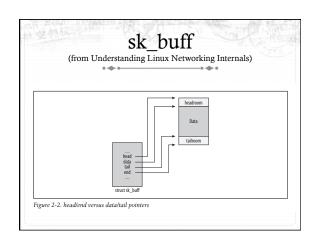
- int listen(fd, backlog) Indicate you want incoming connections
 - Backlog is how many pending connections to buffer until dropped
- int accept(fd, addr, len, flags) Blocks until you get a connection, returns where from in addr
 - * Return value is a new file descriptor for child
 - → If you don't like it, just close the new fd

Client APIs

- * Both client and server create endpoints using socket()
 - * Server uses bind, listen, accept
 - * Client uses connect(fd, addr, addrlen) to connect to server
- * Once a connection is established:
 - ♦ Both use send/recv
 - ♦ Pretty self-explanatory calls

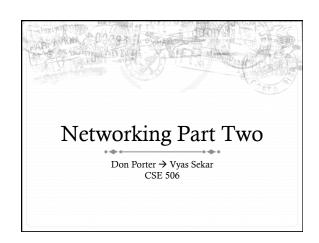
Client/server toy example

- + Quick demo ..
- ♦ Client/server code from

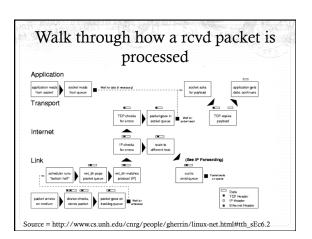

 $http://www.linuxhowtos.org/C_C++/socket.htm\\$

Linux implementation

- * Sockets implemented in the kernel
 - * So are TCP, UDP and IP
- ♦ Benefits:
 - Application doesn't need to be scheduled for TCP ACKs, retransmit, etc.
- * Kernel trusted with correct delivery of packets
- * A single system call (i386):
 - sys_socketcall(call, args)
 - + Has a sub-table of calls, like bind, connect, etc.


Plumbing

- * Each message is put in a sk_buff structure
- Between socket/application and device, the sk_buff is passed through a stack of protocol handlers
 - These handlers update internal bookkeeping, wrap payload in their headers, etc.
- At the bottom is the device itself, which sends/receives the packets


Efficient packet processing

- * Moving pointers is more efficient than removing headers
- * Appending headers is more efficient than re-copy

Recap from last class

- → Layering
- ‡ L2, L3, L4 basics
- * Packet walkthrough

Interrupt handler

- + "Top half" responsible to:
 - * Allocate a buffer (sk_buff)
 - ♦ Copy received data into the buffer
 - ♦ Initialize a few fields
 - ♦ Call "bottom half" handler
- In some cases, sk_buff can be pre-allocated, and network card can copy data in (DMA) before firing the interrupt
 - ♦ Lab 6 will follow this design

Quick review

- ♦ Why top and bottom halves?
 - To minimize time in an interrupt handler with other interrupts disabled
 - * Gives kernel more scheduling flexibility
 - Simplifies service routines (defer complicated operations to a more general processing context)

Digression: Softirqs

- * A hardware IRQ is the hardware interrupt line
 - * Also used for hardware "top half"
- * Soft IRQ is the associated software "interrupt" handler
 - ♦ Or, "bottom half"
- How are these implemented in Linux?
 - * Two canonical ways: Softirq and Tasklet
 - ♦ More general than just networking

Softirqs

- * Kernel's view: per-CPU work lists
 - * Tuples of <function, data>
- * At the right time, call function(data)
 - * Right time: Return from exceptions/interrupts/sys. calls
 - Also, each CPU has a kernel thread ksoftirqd_CPU# that processes pending requests
 - * ksoftirqd is nice +19. What does that mean?
 - ♦ Lowest priority only called when nothing else to do

Softirqs, cont.

- ♦ Device programmer's view:
 - Only one instance of a softirq function will run on a CPU at a time
 - + Doesn't need to be reentrant
 - reentrant if it can be interrupted in the middle of its execution and then safely called again ("re-entered") before its previous invocations complete execution
 - * If interrupted, won't be called again by interrupt handler
 - + Subsequent calls enqueued!
 - * One instance can run on each CPU concurrently, though
 - ♦ Must use locks

Tasklets

- * For the faint of heart (and faint of locking prowess)
- * Constrained to only run one at a time on any CPU
 - * Useful for poorly synchronized device drivers
 - * Say those that assume a single CPU in the 90's
 - Downside: If your driver uses tasklets, and you have multiple devices of the same type---the bottom halves of different devices execute serially

Softirq priorities

- Actually, there are 6 queues per CPU; processed in priority order:
 - # HI_SOFTIRQ (high/first)
 - → TIMER
 - ► NET TX
 - ♦ NET RX

 - → TASKLET (low/last)

Observation 1

- → Devices can decide whether their bottom half is higher or lower priority than network traffic (HI or TASKLET)
 - * Example: Video capture device may want to run its bottom half at HI, to ensure quality of service
 - * Example: Printer may not care

Observation 2

- + Transmit traffic prioritized above receive. Why?
 - The ability to send packets may stem the tide of incoming packets
 - Obviously eliminates retransmit requests based on timeout
 - + Can also send "back-off" messages

Receive bottom half

- * For each pending sk_buff:
 - * Pass a copy to any taps (sniffers)
 - * Do any MAC-layer processing, like bridging
 - * Pass a copy to the appropriate protocol handler (e.g., IP)
 - * Recur on protocol handler until you get to a port
 - + Perform some handling transparently (filtering, ACK, retry)
 - + If good, deliver to associated socket
 - → If bad, drop

Socket delivery

- Once the bottom half/protocol handler moves a payload into a socket:
 - Check and see if the task is blocked on input for this socket
 - ♦ If so, wake it up
- ♦ Read/recv system calls copy data into application

Socket sending

- * Send/write system calls copy data into socket
 - * Allocate sk_buff for data
 - * Be sure to leave plenty of head and tail room!
- ♦ System call does protocol handling during application's timeslice
 - * Note that receive handling done during ksoftirqd timeslice
- * Last protocol handler enqueues a softirq to transmit

Transmission

- Softirq can go ahead and invoke low-level driver to do a send
- ♦ Interrupt usually signals completion
 - ♦ Interrupt handler just frees the sk_buff

Switching gears

- ♦ We've seen the path network data takes through the kernel in some detail
- Now, let's talk about how network drivers handle heavy loads

Our cup runneth over

- * Suppose an interrupt fires every time a packet comes in
 - * This takes N ms to process the interrupt
- What happens when packets arrive at a frequency approaching or exceeding N?
- Will the bottom halves for any of these packets get executed?
 - ✦ No. They are lower-priority than new packets

Receive livelock

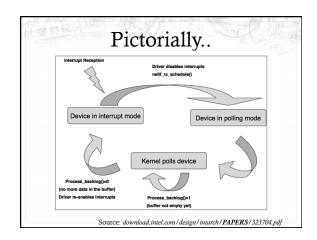
- The condition that the system never makes progress because it spends all of its time starting to process new packets
- Real problem: Hard to prioritize other work over interrupts
- * Principle: Better to process one packet to completion than to run just the top half on a million

Receive livelock in practice | Mithout screend | Mithout screend

Shedding load

- If you can't process all incoming packets, you must drop some
- Principle: If you are going to drop some packets, better do it early!
- If you quit taking packets off of the network card, the network card will drop packets once its buffers get full

Idea


- ♦ Under heavy load, disable the network card's interrupts
- ♦ Use polling instead
 - * Ask if there is more work once you've done the first batch
- This allows a packet to make it all the way through all of the bottom half processing, the application, and get a response back out
- * Ensuring some progress! Yay!

Why not poll all the time?

- * If polling is so great, why even bother with interrupts?
- Latency: When incoming traffic is rare, we want highpriority, latency-sensitive applications to get their data ASAP

General insight

- + If the expected input rate is low, interrupts are better
- * When the expected input rate gets above a certain threshold, polling is better
- Just need to figure out a way to dynamically switch between the two methods...

Why haven't we seen this before?

- + Why don't disks have this problem?
- ♦ Inherently rate limited
- If the CPU is bogged down processing previous disk requests, it can't issue more
- An external CPU can generate all sorts of network inputs

Linux NAPI

- ♦ Or New API. Seriously.
- Every driver provides a poll() method that does the lowlevel receive
 - * Called in first step of softirq RX function
- ♦ Top half just schedules poll() to do the receive as softirq
 - Can disable the interrupt under heavy loads; use timer interrupt to schedule a poll
 - Bonus: Some rare NICs have a timer; can fire an interrupt periodically, only if something to say!

NAPI

- ♦ Gives kernel control to throttle network input
- ♦ Slow adoption means some measure of driver rewriting
- * Backwards compatibility solution:
 - + Old top half still creates sk_buffs and puts them in a queue
 - ♦ Queue assigned to a fake "backlog" device
 - ♦ Backlog poll device is scheduled by NAPI softirq
 - * Interrupts can still be disabled

NAPI Summary

- * Too much input is a real problem
- NAPI lets kernel throttle interrupts until current packets processed
- ❖ Softirq priorities let some devices run their bottom halves before net TX/RX
 - * Net TX handled before RX

General summary

- * Networking basics and APIs
- ♦ Idea of plumbing from socket to driver
 - * Through protocol handlers and softirq poll methods
- * NAPI and input throttling