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Today’s Lecture 

Lecture goal 

ò  Understand how memory allocators work 

ò  In both kernel and applications 

ò  Understand trade-offs and current best practices 

Bump allocator 

ò  malloc (6) 

ò  malloc (12) 

ò  malloc(20) 

ò  malloc (5) 

Bump allocator 

ò  Simply “bumps” up the free pointer 

ò  How does free() work?  It doesn’t 

ò  Well, you could try to recycle cells if  you wanted, but 
complicated bookkeeping 

ò  Controversial observation: This is ideal for simple 
programs 

ò  You only care about free() if  you need the memory for 
something else 

Assume memory is limited 

ò  Hoard: best-of-breed concurrent allocator 

ò  User applications 

ò  Seminal paper 

ò  We’ll also talk about how Linux allocates its own 
memory 



9/14/12	  

2	  

Overarching issues 

ò  Fragmentation 

ò  Allocation and free latency 

ò  Synchronization/Concurrency 

ò  Implementation complexity 

ò  Cache behavior 

ò  Alignment (cache and word) 

ò  Coloring 

Fragmentation 

ò  Undergrad review: What is it?  Why does it happen? 

ò  What is  

ò  Internal fragmentation? 

ò  Wasted space when you round an allocation up 

ò  External fragmentation? 

ò  When you end up with small chunks of  free memory that 
are too small to be useful 

ò  Which kind does our bump allocator have? 

Hoard: Superblocks 

ò  At a high level, allocator operates on superblocks 

ò  Chunk of  (virtually) contiguous pages 

ò  All objects in a superblock are the same size 

ò  A given superblock is treated as an array of  same-sized 
objects 

ò  They generalize to “powers of  b > 1”;  

ò  In usual practice, b == 2 

Superblock intuition 
256 byte  

object heap 

4 KB page 

(Free space) 

4 KB page 

next next next 

next next next 

Free next 

Free list in 
LIFO order 

Each page 
an array of  

objects 

Store list pointers 
in free objects! 

Superblock Intuition 

malloc (8); 

1)  Find the nearest power of  2 heap (8) 

2)  Find free object in superblock 

3)  Add a superblock if  needed.  Goto 2. 

malloc (200) 
256 byte  

object heap 

4 KB page 

(Free space) 

4 KB page 

next next next 

next next next 

Free next 

Pick first 
free object 
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Superblock example 

ò  Suppose my program allocates objects of  sizes: 

ò  4, 5, 7, 34, and 40 bytes. 

ò  How many superblocks do I need (if  b ==2)? 

ò  3 – (4, 8, and 64 byte chunks) 

ò  If  I allocate a 5 byte object from an 8 byte superblock, 
doesn’t that yield internal fragmentation? 

ò  Yes, but it is bounded to < 50% 

ò  Give up some space to bound worst case and complexity 

Memory free 

ò  Simple most-recently-used list for a superblock 

ò  How do you tell which superblock an object is from? 

ò  Round address down: suppose superblock is 8k (2pages) 

ò  Object at address 0x431a01c  

ò  Came from a superblock that starts at 0x431a000 or 0x4319000  

ò  Which one?  (assume superblocks are virtually contiguous) 

ò  Subtract first superblock virtual address and it is the one 
divisible by two  

ò  Simple math can tell you where an object came from! 

Big objects 

ò  If  an object size is bigger than half  the size of  a 
superblock, just mmap() it 

ò  Recall, a superblock is on the order of  pages already 

ò  What about fragmentation? 

ò  Example: 4097 byte object (1 page + 1 byte) 

ò  Argument (preview): More trouble than it is worth 

ò  Extra bookkeeping, potential contention, and potential bad 
cache behavior  

LIFO 

ò  Why are objects re-allocated most-recently used first? 

ò  Aren’t all good OS heuristics FIFO? 

ò  More likely to be already in cache (hot) 

ò  Recall from undergrad architecture that it takes quite a 
few cycles to load data into cache from memory 

ò  If  it is all the same, let’s try to recycle the object already in 
our cache 

High-level strategy 

ò  Allocate a heap for each processor, and one shared heap 

ò  Note: not threads, but CPUs 

ò  Can only use as many heaps as CPUs at once 

ò  Requires some way to figure out current processor 

ò  Try per-CPU heap first 

ò  If  no free blocks of  right size, then try global heap 

ò  If  that fails, get another superblock for per-CPU heap 

Simplicity 

ò  The bookkeeping for alloc and free is pretty 
straightforward; many allocators are quite complex (slab) 

ò  Overall: Need a simple array of   (# CPUs + 1) heaps 

ò  Per heap: 1 list of  superblocks per object size 

ò  Per superblock:  

ò  Need to know which/how many objects are free 

ò  LIFO list of  free blocks 
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Locking 

ò  On alloc and free, superblock and per-CPU heap are 
locked 

ò  Why? 

ò  An object can be freed from a different CPU than it was 
allocated on 

ò  Alternative:  

ò  We could add more bookkeeping for objects to move to 
local superblock  

ò  Reintroduce fragmentation issues and lose simplicity 

How to find the locks? 

ò  Again, page alignment can identify the start of  a 
superblock 

ò  And each superblock keeps a small amount of  metadata, 
including the heap it belongs to 

ò  Per-CPU or shared Heap 

ò  And heap includes a lock 

Locking performance 

ò  Acquiring and releasing a lock generally requires an 
atomic instruction 

ò  Tens to a few hundred cycles vs. a few cycles 

ò  Waiting for a lock can take thousands 

ò  Depends on how good the lock implementation is at 
managing contention (spinning) 

ò  Blocking locks require many hundreds of  cycles to context 
switch 

Performance argument 

ò  Common case: allocations and frees are from per-CPU 
heap 

ò  Yes, grabbing a lock adds overheads 

ò  But better than the fragmented or complex alternatives 

ò  And locking hurts scalability only under contention 

ò  Uncommon case: all CPUs contend to access one heap 

ò  Had to all come from that heap (only frees cross heaps) 

ò  Bizarre workload, probably won’t scale anyway 

New topic: alignment 

ò  Word 

ò  Cacheline 

Alignment (words) 

struct foo {!

!bit x;!

!int y;!

};!

ò  Naïve layout: 1 bit for x, followed by 32 bits for y 

ò  CPUs only do aligned operations 

ò  32-bit add expects arguments to start at addresses divisible by 32 
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Word alignment, cont. 

ò  If  fields of  a data type are not aligned, the compiler has 
to generate separate instructions for the low and high bits 

ò  No one wants to do this 

ò  Compiler generally pads this out 

ò  Waste 31 bits after x 

ò  Save a ton of  code reinventing simple arithmetic 

ò  Code takes space in memory too! 

Memory allocator + 
alignment 

ò  Compiler generally expects a structure to be allocated 
starting on a word boundary 

ò  Otherwise, we have same problem as before 

ò  Code breaks if  not aligned 

ò  This contract often dictates a degree of  fragmentation 

ò  See the appeal of  2^n sized objects yet? 

Cacheline alignment 

ò  Different issue, similar name 

ò  Cache lines are bigger than words 

ò  Word: 32-bits or 64-bits 

ò  Cache line – 64—128 bytes on most CPUs 

ò  Lines are the basic unit at which memory is cached 

Simple coherence model 

ò  When a memory region is cached, CPU automatically 
acquires a reader-writer lock on that region 

ò  Multiple CPUs can share a read lock 

ò  Write lock is exclusive 

ò  Programmer can’t control how long these locks are held 

ò  Ex: a store from a register holds the write lock long 
enough to perform the write; held from there until the 
next CPU wants it 

Object foo  
(CPU 0 writes) 

Object bar 
(CPU 1 writes) 

False sharing 

ò  These objects have nothing to do with each other 

ò  At program level, private to separate threads 

ò  At cache level, CPUs are fighting for a write lock 

Cache line 

False sharing is BAD 

ò  Leads to pathological performance problems 

ò  Super-linear slowdown in some cases 

ò  Rule of  thumb: any performance trend that is more than 
linear in the number of  CPUs is probably caused by 
cache behavior 
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Strawman 

ò  Round everything up to the size of  a cache line 

ò  Thoughts? 

ò  Wastes too much memory; a bit extreme 

Hoard strategy 
(pragmatic) 

ò  Rounding up to powers of  2 helps 

ò  Once your objects are bigger than a cache line 

ò  Locality observation: things tend to be used on the CPU 
where they were allocated 

ò  For small objects, always return free to the original heap 

ò  Remember idea about extra bookkeeping to avoid 
synchronization: some allocators do this 

ò  Save locking, but introduce false sharing! 

Hoard strategy (2) 

ò  Thread A can allocate 2 small objects from the same line 

ò  “Hand off ” 1 to another thread to use; keep using 2nd 

ò  This will cause false sharing 

ò  Question: is this really the allocator’s job to prevent this? 

Where to draw the line? 

ò  Encapsulation should match programmer intuitions 

ò  (my opinion) 

ò  In the hand-off  example: 

ò  Hard for allocator to fix 

ò  Programmer would have reasonable intuitions (after 506) 

ò  If  allocator just gives parts of  same lines to different 
threads 

ò  Hard for programmer to debug performance 

Hoard summary 

ò  Really nice piece of  work 

ò  Establishes nice balance among concerns 

ò  Good performance results 

Linux kernel allocators 

ò  Focus today on dynamic allocation of  small objects 

ò  Later class on management of  physical pages 

ò  And allocation of  page ranges to allocators 
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kmem_caches 

ò  Linux has a kmalloc and kfree, but caches preferred for 
common object types 

ò  Like Hoard, a given cache allocates a specific type of  
object 

ò  Ex: a cache for file descriptors, a cache for inodes, etc. 

ò  Unlike Hoard, objects of  the same size not mixed 

ò  Allocator can do initialization automatically 

ò  May also need to constrain where memory comes from 

Caches (2) 

ò  Caches can also keep a certain “reserve” capacity 

ò  No guarantees, but allows performance tuning 

ò  Example: I know I’ll have ~100 list nodes frequently 
allocated and freed; target the cache capacity at 120 
elements to avoid expensive page allocation 

ò  Often called a memory pool 

ò  Universal interface: can change allocator underneath 

ò  Kernel has kmalloc and kfree too 

ò  Implemented on caches of  various powers of  2 (familiar?) 

Superblocks to slabs 

ò  The default cache allocator (at least as of  early 2.6) was 
the slab allocator 

ò  Slab is a chunk of  contiguous pages, similar to a 
superblock in Hoard 

ò  Similar basic ideas, but substantially more complex 
bookkeeping 

ò  The slab allocator came first, historically 

Complexity backlash 

ò  I’ll spare you the details, but slab bookkeeping is 
complicated 

ò  2 groups upset:  (guesses who?) 

ò  Users of  very small systems 

ò  Users of  large multi-processor systems 

Small systems 

ò  Think 4MB of  RAM on a small device/phone/etc. 

ò  As system memory gets tiny, the bookkeeping overheads 
become a large percent of  total system memory 

ò  How bad is fragmentation really going to be? 

ò  Note: not sure this has been carefully studied; may just be 
intuition 

SLOB allocator 

ò  Simple List Of  Blocks 

ò  Just keep a free list of  each available chunk and its size 

ò  Grab the first one big enough to work 

ò  Split block if  leftover bytes 

ò  No internal fragmentation, obviously 

ò  External fragmentation?  Yes.  Traded for low overheads 
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Large systems 

ò  For very large (thousands of  CPU) systems, complex 
allocator bookkeeping gets out of  hand 

ò  Example: slabs try to migrate objects from one CPU to 
another to avoid synchronization 

ò  Per-CPU * Per-CPU bookkeeping 

SLUB Allocator 

ò  The Unqueued Slab Allocator 

ò  A much more Hoard-like design 

ò  All objects of  same size from same slab 

ò  Simple free list per slab 

ò  No cross-CPU nonsense 

SLUB status 

ò  Does better than SLAB in many cases 

ò  Still has some performance pathologies 

ò  Not universally accepted 

ò  General-purpose memory allocation is tricky business 

Forward pointer 

ò  Hoard gets more Superblocks via mmap 

ò  What is the kernel’s equivalent of  mmap? 

ò  Everything we’ve talked about today posits something that 
can give us reasonably-sized, contiguous chunks of  pages 

Conclusion 

ò  Different allocation strategies have different trade-offs 

ò  No one, perfect solution 

ò  Allocators try to optimize for multiple variables: 

ò  Fragmentation, low false conflicts, speed, multi-processor 
scalability, etc. 

ò  Understand tradeoffs: Hoard vs Slab vs. SLOB 

Misc notes 

ò  When is a superblock considered free and eligible to be 
move to the global bucket? 

ò  See figure 2, free(), line 9 

ò  Essentially a configurable “empty fraction” 

ò  Is a "used block" count stored somewhere?  

ò  Not clear, but probably 


