
9/14/12	  

1	  

The Art and Science of  
Memory Allocation 

Don Porter 
CSE 506 

Logical Diagram 

Memory  
Management 

CPU 
Scheduler 

User 

Kernel 

Hardware 

Binary 
Formats 

Consistency 

System Calls 

Interrupts Disk Net 

RCU File System 

Device 
Drivers 

Networking Sync 

Memory 
Allocators Threads 

Today’s Lecture 

Lecture goal 

ò  Understand how memory allocators work 

ò  In both kernel and applications 

ò  Understand trade-offs and current best practices 

Bump allocator 

ò  malloc (6) 

ò  malloc (12) 

ò  malloc(20) 

ò  malloc (5) 

Bump allocator 

ò  Simply “bumps” up the free pointer 

ò  How does free() work?  It doesn’t 

ò  Well, you could try to recycle cells if  you wanted, but 
complicated bookkeeping 

ò  Controversial observation: This is ideal for simple 
programs 

ò  You only care about free() if  you need the memory for 
something else 

Assume memory is limited 

ò  Hoard: best-of-breed concurrent allocator 

ò  User applications 

ò  Seminal paper 

ò  We’ll also talk about how Linux allocates its own 
memory 



9/14/12	  

2	  

Overarching issues 

ò  Fragmentation 

ò  Allocation and free latency 

ò  Synchronization/Concurrency 

ò  Implementation complexity 

ò  Cache behavior 

ò  Alignment (cache and word) 

ò  Coloring 

Fragmentation 

ò  Undergrad review: What is it?  Why does it happen? 

ò  What is  

ò  Internal fragmentation? 

ò  Wasted space when you round an allocation up 

ò  External fragmentation? 

ò  When you end up with small chunks of  free memory that 
are too small to be useful 

ò  Which kind does our bump allocator have? 

Hoard: Superblocks 

ò  At a high level, allocator operates on superblocks 

ò  Chunk of  (virtually) contiguous pages 

ò  All objects in a superblock are the same size 

ò  A given superblock is treated as an array of  same-sized 
objects 

ò  They generalize to “powers of  b > 1”;  

ò  In usual practice, b == 2 

Superblock intuition 
256 byte  

object heap 

4 KB page 

(Free space) 

4 KB page 

next next next 

next next next 

Free next 

Free list in 
LIFO order 

Each page 
an array of  

objects 

Store list pointers 
in free objects! 

Superblock Intuition 

malloc (8); 

1)  Find the nearest power of  2 heap (8) 

2)  Find free object in superblock 

3)  Add a superblock if  needed.  Goto 2. 

malloc (200) 
256 byte  

object heap 

4 KB page 

(Free space) 

4 KB page 

next next next 

next next next 

Free next 

Pick first 
free object 



9/14/12	  

3	  

Superblock example 

ò  Suppose my program allocates objects of  sizes: 

ò  4, 5, 7, 34, and 40 bytes. 

ò  How many superblocks do I need (if  b ==2)? 

ò  3 – (4, 8, and 64 byte chunks) 

ò  If  I allocate a 5 byte object from an 8 byte superblock, 
doesn’t that yield internal fragmentation? 

ò  Yes, but it is bounded to < 50% 

ò  Give up some space to bound worst case and complexity 

Memory free 

ò  Simple most-recently-used list for a superblock 

ò  How do you tell which superblock an object is from? 

ò  Round address down: suppose superblock is 8k (2pages) 

ò  Object at address 0x431a01c  

ò  Came from a superblock that starts at 0x431a000 or 0x4319000  

ò  Which one?  (assume superblocks are virtually contiguous) 

ò  Subtract first superblock virtual address and it is the one 
divisible by two  

ò  Simple math can tell you where an object came from! 

Big objects 

ò  If  an object size is bigger than half  the size of  a 
superblock, just mmap() it 

ò  Recall, a superblock is on the order of  pages already 

ò  What about fragmentation? 

ò  Example: 4097 byte object (1 page + 1 byte) 

ò  Argument (preview): More trouble than it is worth 

ò  Extra bookkeeping, potential contention, and potential bad 
cache behavior  

LIFO 

ò  Why are objects re-allocated most-recently used first? 

ò  Aren’t all good OS heuristics FIFO? 

ò  More likely to be already in cache (hot) 

ò  Recall from undergrad architecture that it takes quite a 
few cycles to load data into cache from memory 

ò  If  it is all the same, let’s try to recycle the object already in 
our cache 

High-level strategy 

ò  Allocate a heap for each processor, and one shared heap 

ò  Note: not threads, but CPUs 

ò  Can only use as many heaps as CPUs at once 

ò  Requires some way to figure out current processor 

ò  Try per-CPU heap first 

ò  If  no free blocks of  right size, then try global heap 

ò  If  that fails, get another superblock for per-CPU heap 

Simplicity 

ò  The bookkeeping for alloc and free is pretty 
straightforward; many allocators are quite complex (slab) 

ò  Overall: Need a simple array of   (# CPUs + 1) heaps 

ò  Per heap: 1 list of  superblocks per object size 

ò  Per superblock:  

ò  Need to know which/how many objects are free 

ò  LIFO list of  free blocks 



9/14/12	  

4	  

Locking 

ò  On alloc and free, superblock and per-CPU heap are 
locked 

ò  Why? 

ò  An object can be freed from a different CPU than it was 
allocated on 

ò  Alternative:  

ò  We could add more bookkeeping for objects to move to 
local superblock  

ò  Reintroduce fragmentation issues and lose simplicity 

How to find the locks? 

ò  Again, page alignment can identify the start of  a 
superblock 

ò  And each superblock keeps a small amount of  metadata, 
including the heap it belongs to 

ò  Per-CPU or shared Heap 

ò  And heap includes a lock 

Locking performance 

ò  Acquiring and releasing a lock generally requires an 
atomic instruction 

ò  Tens to a few hundred cycles vs. a few cycles 

ò  Waiting for a lock can take thousands 

ò  Depends on how good the lock implementation is at 
managing contention (spinning) 

ò  Blocking locks require many hundreds of  cycles to context 
switch 

Performance argument 

ò  Common case: allocations and frees are from per-CPU 
heap 

ò  Yes, grabbing a lock adds overheads 

ò  But better than the fragmented or complex alternatives 

ò  And locking hurts scalability only under contention 

ò  Uncommon case: all CPUs contend to access one heap 

ò  Had to all come from that heap (only frees cross heaps) 

ò  Bizarre workload, probably won’t scale anyway 

New topic: alignment 

ò  Word 

ò  Cacheline 

Alignment (words) 

struct foo {!

!bit x;!

!int y;!

};!

ò  Naïve layout: 1 bit for x, followed by 32 bits for y 

ò  CPUs only do aligned operations 

ò  32-bit add expects arguments to start at addresses divisible by 32 



9/14/12	  

5	  

Word alignment, cont. 

ò  If  fields of  a data type are not aligned, the compiler has 
to generate separate instructions for the low and high bits 

ò  No one wants to do this 

ò  Compiler generally pads this out 

ò  Waste 31 bits after x 

ò  Save a ton of  code reinventing simple arithmetic 

ò  Code takes space in memory too! 

Memory allocator + 
alignment 

ò  Compiler generally expects a structure to be allocated 
starting on a word boundary 

ò  Otherwise, we have same problem as before 

ò  Code breaks if  not aligned 

ò  This contract often dictates a degree of  fragmentation 

ò  See the appeal of  2^n sized objects yet? 

Cacheline alignment 

ò  Different issue, similar name 

ò  Cache lines are bigger than words 

ò  Word: 32-bits or 64-bits 

ò  Cache line – 64—128 bytes on most CPUs 

ò  Lines are the basic unit at which memory is cached 

Simple coherence model 

ò  When a memory region is cached, CPU automatically 
acquires a reader-writer lock on that region 

ò  Multiple CPUs can share a read lock 

ò  Write lock is exclusive 

ò  Programmer can’t control how long these locks are held 

ò  Ex: a store from a register holds the write lock long 
enough to perform the write; held from there until the 
next CPU wants it 

Object foo  
(CPU 0 writes) 

Object bar 
(CPU 1 writes) 

False sharing 

ò  These objects have nothing to do with each other 

ò  At program level, private to separate threads 

ò  At cache level, CPUs are fighting for a write lock 

Cache line 

False sharing is BAD 

ò  Leads to pathological performance problems 

ò  Super-linear slowdown in some cases 

ò  Rule of  thumb: any performance trend that is more than 
linear in the number of  CPUs is probably caused by 
cache behavior 



9/14/12	  

6	  

Strawman 

ò  Round everything up to the size of  a cache line 

ò  Thoughts? 

ò  Wastes too much memory; a bit extreme 

Hoard strategy 
(pragmatic) 

ò  Rounding up to powers of  2 helps 

ò  Once your objects are bigger than a cache line 

ò  Locality observation: things tend to be used on the CPU 
where they were allocated 

ò  For small objects, always return free to the original heap 

ò  Remember idea about extra bookkeeping to avoid 
synchronization: some allocators do this 

ò  Save locking, but introduce false sharing! 

Hoard strategy (2) 

ò  Thread A can allocate 2 small objects from the same line 

ò  “Hand off ” 1 to another thread to use; keep using 2nd 

ò  This will cause false sharing 

ò  Question: is this really the allocator’s job to prevent this? 

Where to draw the line? 

ò  Encapsulation should match programmer intuitions 

ò  (my opinion) 

ò  In the hand-off  example: 

ò  Hard for allocator to fix 

ò  Programmer would have reasonable intuitions (after 506) 

ò  If  allocator just gives parts of  same lines to different 
threads 

ò  Hard for programmer to debug performance 

Hoard summary 

ò  Really nice piece of  work 

ò  Establishes nice balance among concerns 

ò  Good performance results 

Linux kernel allocators 

ò  Focus today on dynamic allocation of  small objects 

ò  Later class on management of  physical pages 

ò  And allocation of  page ranges to allocators 



9/14/12	  

7	  

kmem_caches 

ò  Linux has a kmalloc and kfree, but caches preferred for 
common object types 

ò  Like Hoard, a given cache allocates a specific type of  
object 

ò  Ex: a cache for file descriptors, a cache for inodes, etc. 

ò  Unlike Hoard, objects of  the same size not mixed 

ò  Allocator can do initialization automatically 

ò  May also need to constrain where memory comes from 

Caches (2) 

ò  Caches can also keep a certain “reserve” capacity 

ò  No guarantees, but allows performance tuning 

ò  Example: I know I’ll have ~100 list nodes frequently 
allocated and freed; target the cache capacity at 120 
elements to avoid expensive page allocation 

ò  Often called a memory pool 

ò  Universal interface: can change allocator underneath 

ò  Kernel has kmalloc and kfree too 

ò  Implemented on caches of  various powers of  2 (familiar?) 

Superblocks to slabs 

ò  The default cache allocator (at least as of  early 2.6) was 
the slab allocator 

ò  Slab is a chunk of  contiguous pages, similar to a 
superblock in Hoard 

ò  Similar basic ideas, but substantially more complex 
bookkeeping 

ò  The slab allocator came first, historically 

Complexity backlash 

ò  I’ll spare you the details, but slab bookkeeping is 
complicated 

ò  2 groups upset:  (guesses who?) 

ò  Users of  very small systems 

ò  Users of  large multi-processor systems 

Small systems 

ò  Think 4MB of  RAM on a small device/phone/etc. 

ò  As system memory gets tiny, the bookkeeping overheads 
become a large percent of  total system memory 

ò  How bad is fragmentation really going to be? 

ò  Note: not sure this has been carefully studied; may just be 
intuition 

SLOB allocator 

ò  Simple List Of  Blocks 

ò  Just keep a free list of  each available chunk and its size 

ò  Grab the first one big enough to work 

ò  Split block if  leftover bytes 

ò  No internal fragmentation, obviously 

ò  External fragmentation?  Yes.  Traded for low overheads 



9/14/12	  

8	  

Large systems 

ò  For very large (thousands of  CPU) systems, complex 
allocator bookkeeping gets out of  hand 

ò  Example: slabs try to migrate objects from one CPU to 
another to avoid synchronization 

ò  Per-CPU * Per-CPU bookkeeping 

SLUB Allocator 

ò  The Unqueued Slab Allocator 

ò  A much more Hoard-like design 

ò  All objects of  same size from same slab 

ò  Simple free list per slab 

ò  No cross-CPU nonsense 

SLUB status 

ò  Does better than SLAB in many cases 

ò  Still has some performance pathologies 

ò  Not universally accepted 

ò  General-purpose memory allocation is tricky business 

Forward pointer 

ò  Hoard gets more Superblocks via mmap 

ò  What is the kernel’s equivalent of  mmap? 

ò  Everything we’ve talked about today posits something that 
can give us reasonably-sized, contiguous chunks of  pages 

Conclusion 

ò  Different allocation strategies have different trade-offs 

ò  No one, perfect solution 

ò  Allocators try to optimize for multiple variables: 

ò  Fragmentation, low false conflicts, speed, multi-processor 
scalability, etc. 

ò  Understand tradeoffs: Hoard vs Slab vs. SLOB 

Misc notes 

ò  When is a superblock considered free and eligible to be 
move to the global bucket? 

ò  See figure 2, free(), line 9 

ò  Essentially a configurable “empty fraction” 

ò  Is a "used block" count stored somewhere?  

ò  Not clear, but probably 


