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Today’s Lecture 



Ext2 review 

ò  Very reliable, “best-of-breed” traditional file system 
design 

ò  Much like the JOS file system you are building now 

ò  Fixed location super blocks 

ò  A few direct blocks in the inode, followed by indirect 
blocks for large files 

ò  Directories are a special file type with a list of  file names 
and inode numbers 

ò  Etc. 



File systems and crashes 

ò  What can go wrong? 

ò  Write a block pointer in an inode before marking block as 
allocated in allocation bitmap  

ò  Write a second block allocation before clearing the first – 
block in 2 files after reboot 

ò  Allocate an inode without putting it in a directory – 
“orphaned” after reboot 

ò  Etc. 



Deeper issue 

ò  Operations like creation and deletion span multiple on-
disk data structures 

ò  Requires more than one disk write 

ò  Think of  disk writes as a series of  updates 

ò  System crash can happen between any two updates 

ò  Crash between wrong two updates leaves on-disk data 
structures inconsistent! 



Atomicity 

ò  The property that something either happens or it doesn’t 

ò  No partial results 

ò  This is what you want for disk updates 

ò  Either the inode bitmap, inode, and directory are updated 
when a file is created, or none of  them are 

ò  But disks only give you atomic writes for a sector L 

ò  Fundamentally hard problem to prevent disk corruptions 
if  the system crashes 



fsck 

ò  Idea: When a file system is mounted, mark the on-disk 
super block as mounted 

ò  If  the system is cleanly shut down, last disk write clears 
this bit 

ò  Reboot: If  the file system isn’t cleanly unmounted, run 
fsck 

ò  Basically, does a linear scan of  all bookkeeping and 
checks for (and fixes) inconsistencies 



fsck examples 

ò  Walk directory tree: make sure each reachable inode is 
marked as allocated 

ò  For each inode, check the reference count, make sure all 
referenced blocks are marked as allocated 

ò  Double-check that all allocated blocks and inodes are 
reachable 

ò  Summary: very expensive, slow scan of  the entire file 
system 



Journaling 

ò  Idea: Keep a log of  what you were doing 

ò  If  the system crashes, just look at data structures that 
might have been involved 

ò  Limits the scope of  recovery; faster fsck! 



Undo vs. redo logging 

ò  Two main choices for a journaling scheme (same in databases, 
etc) 

ò  Undo logging:  

1) Write what you are about to do (and how to undo it)  

ò  Synchronously 

2) Then make changes on disk 

3) Then mark the operations as complete 

ò  If  system crashes before commit record, execute undo steps 

ò  Undo steps MUST be on disk before any other changes!  Why? 



Redo logging 

ò  Before an operation (like create) 

1)  Write everything that is going to be done to the log + a 
commit record 

ò  Sync 

2) Do the updates on disk 

3) When updates are complete, mark the log entry as obsolete 

ò  If  the system crashes during (2), re-execute all steps in 
the log during fsck 



Which one? 

ò  Ext3 uses redo logging 

ò  Tweedie says for delete 

ò  Intuition: It is easier to defer taking something apart than to 
put it back together later 

ò  Hard case: I delete something and reuse a block for something 
else before journal entry commits 

ò  Performance: This only makes sense if  data comfortably fits 
into memory 

ò  Databases use undo logging to avoid loading and writing large 
data sets twice 



Atomicity revisited 

ò  The disk can only atomically write one sector 

ò  Disk and I/O scheduler can reorder requests 

ò  Need atomic journal “commit” 



Atomicity strategy 

ò  Write a journal log entry to disk, with a transaction 
number (sequence counter) 

ò  Once that is on disk, write to a global counter that 
indicates log entry was completely written 

ò  This single write is the point at which a journal entry is 
atomically “committed” or not 

ò  Sometimes called a linearization point 

ò  Atomic: either the sequence number is written or not; 
sequence number will not be written until log entry on 
disk 



Batching 

ò  This strategy requires a lot of  synchronous writes 

ò  Synchronous writes are expensive 

ò  Idea: let’s batch multiple little transactions into one 
bigger one 

ò  Assuming no fsync() 

ò  For up to 5 seconds, or until we fill up a disk block in the 
journal 

ò  Then we only have to wait for one synchronous disk write! 



Complications 

ò  We can’t write data to disk until the journal entry is 
committed to disk 

ò  Ok, since we buffer data in memory anyway 

ò  But we want to bound how long we have to keep dirty 
data (5s by default) 

ò  JBD adds some flags to buffer heads that transparently 
handles a lot of  the complicated bookkeeping 

ò  Pins writes in memory until journal is written 

ò  Allows them to go to disk afterward 



More complications 

ò  We also can’t write to the in-memory version until we’ve 
written a version to disk that is consistent with the 
journal 

ò  Example:  

ò  I modify an inode and write to the journal 

ò  Journal commits, ready to write inode back 

ò  I want to make another inode change 

ò  Cannot safely change in-memory inode until I have either 
written it to the file system or created another journal entry 



Another example 

ò  Suppose journal transaction1 modifies a block, then 
transaction 2 modifies the same block.   

ò  How to ensure consistency? 

ò  Option 1: stall transaction 2 until transaction 1 writes to fs 

ò  Option 2 (ext3): COW in the page cache + ordering of  
writes 



Yet more complications 

ò  Interaction with page reclaiming: 

ò  Page cache can pick a dirty page and tell fs to write it back 

ò  Fs can’t write it until a transaction commits 

ò  PFRA chose this page assuming only one write-back; 
must potentially wait for several 

ò  Advanced file systems need the ability to free another 
page, rather than wait until all prerequisites are met 



Write ordering 

ò  Issue, if  I make file 1 then file 2, can I have a situation 
where file 2 is on disk but not file 1? 

ò  Yes, theoretically 

ò  API doesn’t guarantee this won’t happen (journal 
transactions are independent) 

ò  Implementation happens to give this property by grouping 
transactions into a large, compound transactions 
(buffering) 



Checkpointing 

ò  We should “garbage collect” our log once in a while 

ò  Specifically, once operations are safely on disk, journal 
transaction is obviated 

ò  A very long journal wastes time in fsck 

ò  Journal hooks associated buffer heads to track when they get 
written to disk 

ò  Advances logical start of  the journal, allows reuse of  those 
blocks 



Journaling modes 

ò  Full data + metadata in the journal 

ò  Lots of  data written twice, batching less effective, safer 

ò  Ordered writes 

ò  Only metadata in the journal, but data writes only allowed after 
metadata is in journal 

ò  Faster than full data, but constrains write orderings (slower) 

ò  Metadata only – fastest, most dangerous 

ò  Can write data to a block before it is properly allocated to a file 



Revoke records 

ò  When replaying the journal, don’t redo these operations 

ò  Mostly important for metadata-only modes  

ò  Example: Once a file is deleted and the inode is reused, 
revoke the creation record in the log 

ò  Recreating and re-deleting could lose some data written to 
the file 



ext3 summary 

ò  A modest change: just tack on a journal 

ò  Make crash recovery faster, less likely to lose data 

ò  Surprising number of  subtle issues 

ò  You should be able to describe them 

ò  And key design choices (like redo logging) 



ext4 

ò  ext3 has some limitations that prevent it from handling 
very large, modern data sets 

ò  Can’t fix without breaking backwards compatibility 

ò  So fork the code 

ò  General theme: several changes to better handle larger 
data 

ò  Plus a few other goodies 



Example 

ò  Ext3 fs limited to 16 TB max size 

ò  32-bit block numbers (2^32 * 4k block size), or “address” 
of  blocks on disk 

ò  Can’t make bigger block numbers on disk without 
changing on-disk format 

ò  Can’t fix without breaking backwards compatibility 

ò  Ext4 – 48 bit block numbers 



Indirect blocks vs. extents 

ò  Instead of  represent each block, represent large 
contiguous chunks of  blocks with an extent 

ò  More efficient for large files (both in space and disk 
scheduling) 

ò  Ex: Disk sectors 50—300 represent blocks 0—250 of  file 

ò  Vs.: Allocate and initialize 250 slots in an indirect block 

ò  Deletion requires marking 250 slots as free 



Extents, cont. 

ò  Worse for highly fragmented or sparse files 

ò  If  no 2 blocks are contiguous, will have an extent for each 
block  

ò  Basically a more expensive indirect block scheme 

ò  Propose a block-mapped extent, which essentially reverts 
to a more streamlined indirect block 



Static inode allocations 

ò  When you create an ext3 or ext4 file system, you create 
all possible inodes 

ò  Disk blocks can either be used for data or inodes, but 
can’t change after creation 

ò  If  you need to create a lot of  files, better make lots of  
inodes 

ò  Why?  



Why? 

ò   Simplicity 

ò  Fixed location inodes means you can take inode number, total 
number of  inodes, and find the right block using math 

ò  Dynamic inodes introduces another data structure to track this 
mapping, which can get corrupted on disk (losing all contained 
files!) 

ò  Bookkeeping gets a lot more complicated when blocks change 
type 

ò  Downside: potentially wasted space if  you guess wrong 
number of  files 



Directory scalability 

ò  An ext3 directory can have a max of  32,000 sub-
directories/files 

ò  Painfully slow to search – remember, this is just a simple 
array on disk (linear scan to lookup a file) 

ò  Replace this in ext4 with an HTree  

ò  Hash-based custom BTree 

ò  Relatively flat tree to reduce risk of  corruptions 

ò  Big performance wins on large directories – up  to 100x 



Other goodies 

ò  Improvements to help with locality 

ò  Preallocation and hints keep blocks that are often accessed 
together close on the disk 

ò  Checksumming of  disk blocks is a good idea 

ò  Especially for journal blocks  

ò  Fsck on a large fs gets expensive 

ò  Put used inodes at front if  possible, skip large swaths of  
unused inodes if  possible 



Summary 

ò  ext2 – Great implementation of  a “classic” file system 

ò  ext3 – Add a journal for faster crash recovery and less 
risk of  data loss 

ò  ext4 – Scale to bigger data sets, plus other features 

ò  Total FS size (48-bit block numbers) 

ò  File size/overheads (extents) 

ò  Directory size (HTree vs. a list) 


