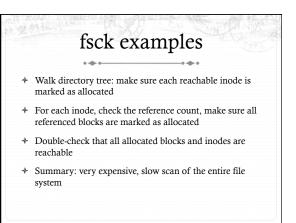
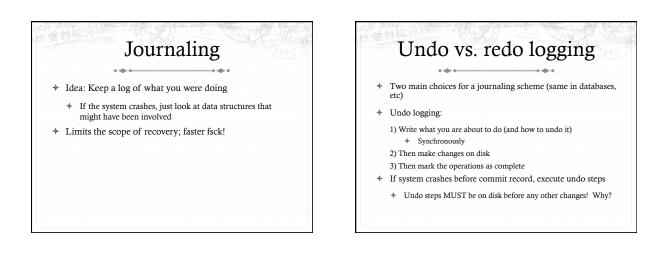
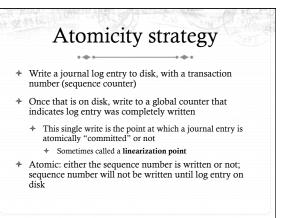

File systems and crashes


- ✤ What can go wrong?
 - Write a block pointer in an inode before marking block as allocated in allocation bitmap
 - Write a second block allocation before clearing the first block in 2 files after reboot
 - Allocate an inode without putting it in a directory "orphaned" after reboot
 - ✤ Etc.



- * The property that something either happens or it doesn't
 - + No partial results
- * This is what you want for disk updates
 - Either the inode bitmap, inode, and directory are updated when a file is created, or none of them are
- ✤ But disks only give you atomic writes for a sector ☺
- Fundamentally hard problem to prevent disk corruptions if the system crashes


- 2) Do the updates on disk
- 3) When updates are complete, mark the log entry as obsolete
- If the system crashes during (2), re-execute all steps in the log during fsck

Which one?

- + Ext3 uses redo logging
 - + Tweedie says for delete
- Intuition: It is easier to defer taking something apart than to put it back together later
 - + Hard case: I delete something and reuse a block for something else before journal entry commits
- Performance: This only makes sense if data comfortably fits into memory
 - Databases use undo logging to avoid loading and writing large data sets twice

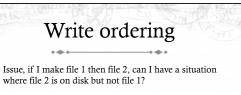
Atomicity revisited

- * The disk can only atomically write one sector
- Disk and I/O scheduler can reorder requests
- Need atomic journal "commit"

Batching This strategy requires a lot of synchronous writes Synchronous writes are expensive Idea: let's batch multiple little transactions into one bigger one Assuming no fsync() For up to 5 seconds, or until we fill up a disk block in the journal Then we only have to wait for one synchronous disk write!

- We can't write data to disk until the journal entry is committed to disk
 - * Ok, since we buffer data in memory anyway
 - But we want to bound how long we have to keep dirty data (5s by default)
 - JBD adds some flags to buffer heads that transparently handles a lot of the complicated bookkeeping
 - + Pins writes in memory until journal is written
 - Allows them to go to disk afterward

More complications


- We also can't write to the in-memory version until we've written a version to disk that is consistent with the iournal
- ✤ Example:
 - * I modify an inode and write to the journal
 - Journal commits, ready to write inode back
 - + I want to make another inode change
 - * Cannot safely change in-memory inode until I have either written it to the file system or created another journal entry

Another example

- Suppose journal transaction1 modifies a block, then transaction 2 modifies the same block.
- + How to ensure consistency?
 - + Option 1: stall transaction 2 until transaction 1 writes to fs
 - Option 2 (ext3): COW in the page cache + ordering of writes

Yet more complications

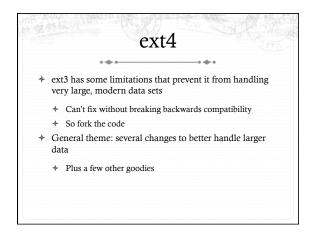
- Interaction with page reclaiming:
 - + Page cache can pick a dirty page and tell fs to write it back
 - + Fs can't write it until a transaction commits
 - PFRA chose this page assuming only one write-back; must potentially wait for several
- + Advanced file systems need the ability to free another page, rather than wait until all prerequisites are met

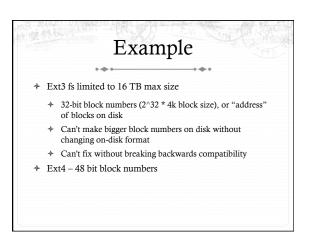
- Yes, theoretically
- + API doesn't guarantee this won't happen (journal transactions are independent)
 - * Implementation happens to give this property by grouping transactions into a large, compound transactions (buffering)

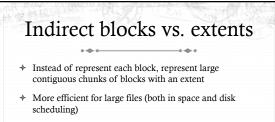
Checkpointing * We should "garbage collect" our log once in a while

- + Specifically, once operations are safely on disk, journal transaction is obviated
- * A very long journal wastes time in fsck
- Journal hooks associated buffer heads to track when they get written to disk
 - ÷ Advances logical start of the journal, allows reuse of those blocks

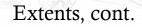
Journaling modes

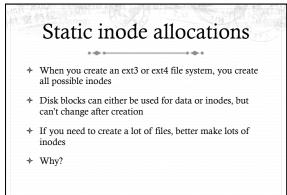

- * Full data + metadata in the journal
- + Lots of data written twice, batching less effective, safer 4
 - Ordered writes
 - + Only metadata in the journal, but data writes only allowed after metadata is in journal
 - + Faster than full data, but constrains write orderings (slower)
- Metadata only fastest, most dangerous
- + Can write data to a block before it is properly allocated to a file

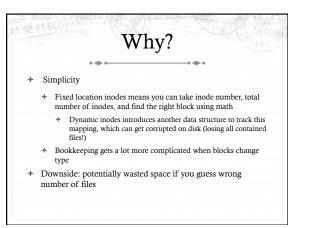

Revoke records


- * When replaying the journal, don't redo these operations
 - * Mostly important for metadata-only modes
- * Example: Once a file is deleted and the inode is reused, revoke the creation record in the log
 - Recreating and re-deleting could lose some data written to ÷ the file

ext3 summary

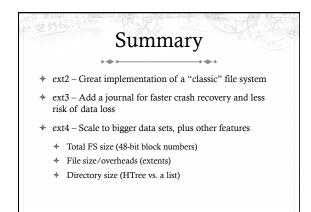

- * A modest change: just tack on a journal
- * Make crash recovery faster, less likely to lose data
- Surprising number of subtle issues
 - + You should be able to describe them
 - + And key design choices (like redo logging)





- + Ex: Disk sectors 50-300 represent blocks 0-250 of file
 - * Vs.: Allocate and initialize 250 slots in an indirect block
 - * Deletion requires marking 250 slots as free

- + Worse for highly fragmented or sparse files
 - If no 2 blocks are contiguous, will have an extent for each block
 - * Basically a more expensive indirect block scheme
 - Propose a block-mapped extent, which essentially reverts to a more streamlined indirect block



Directory scalability

- An ext3 directory can have a max of 32,000 subdirectories/files
 - Painfully slow to search remember, this is just a simple array on disk (linear scan to lookup a file)
- * Replace this in ext4 with an HTree
 - ✤ Hash-based custom BTree
 - * Relatively flat tree to reduce risk of corruptions
 - * Big performance wins on large directories up to 100x

Other goodies

- * Improvements to help with locality
 - Preallocation and hints keep blocks that are often accessed together close on the disk
- * Checksumming of disk blocks is a good idea
 - * Especially for journal blocks
- ✤ Fsck on a large fs gets expensive
 - ✤ Put used inodes at front if possible, skip large swaths of unused inodes if possible

