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Difficult topic 

ò  Memory consistency models are difficult to understand 

ò  Knowing when and how to use memory barriers in your 
programs takes a long time to master 

ò  I read the long version of  this paper about once a year 

ò  Started in graduate architecture, still mastering this 

ò  Even if  you can’t master this material, it is worth 
conveying some intuitions and getting you started on the 
path 

ò  Multi-core programming is increasingly common 



Background 

ò  In the 90s, people were figuring out how to build and 
program shared memory multi-processors 

ò  Several hardware and compiler optimizations that 
worked well on single-CPU systems were causing 
“heisen-bugs” in correct parallel code 

ò  Disabling all optimizations made this code correct, but 
slow 

ò  Various consistency models strike different balances 
between optimization and programmability 



Simple example 

/* Pre condition: flag = 0 */ 

x = a + b 

flag = 1 
a isn’t in the cache yet.
(or ALU is busy, etc) 

This line is independent of  the one above.  
Execute first, since result is identical 



Extended to multi-
processors 

/* Pre condition: flag = 0 */ 

Thread 1 

x = a + b 

flag = 1 

 

Thread 2 

while ( ! flag ) { 1; } 

val = x 

flag is acting as a barrier to 
synchronize read of  x after x 

was written 



Distinction 

ò  Compiler/CPU can figure out when instructions can be 
safely reordered within a given thread 

ò  Hard to figure out when the order is meaningful to 
coordinate with other threads 

ò  If  you want optimizations (and you do), programmer 
MUST give hardware and compiler some hints 

ò  Hard to design hints that average programmer can 
successfully give the hardware 



Definitions 

ò  Cache coherence: The protocol by which writes to one 
cache invalidate or update other caches 

ò  Memory consistency model: How are updates to 
memory published from one CPU to another 

ò  Reordering between CPU and cache/memory? 

ò  Are cache updates/invalidations delivered atomically? 

ò  Coherence protocol detail that impacts consistency 

ò  Distinction between coherence and consistency muddled  



Intuition 

ò  On a bus-based multi-processor system (nearly all current 
x86 CPUs), a write to the cache immediately invalidates 
other caches 

ò  Making the write visible to other CPUs 

ò  But, the update could spend some time in a write buffer 
or register on the CPU 

ò  If  a later write goes to the cache first, these will become 
visible to another CPU out of  program order 



Sequential Consistency 

ò  Simplest possible model 

ò  Every program instruction is executed in order 

ò  No buffered memory writes 

ò  Only one CPU writes to memory at a time 

ò  Given a write to address x, all cached values of  x are 
invalidated before any CPU can write anything else 

ò  Simple to reason about 



Sequential is too slow 

ò  CPUs want to pipeline instructions 

ò  Hide high latency instructions 

ò  Sequential consistency prevents these optimizations 

ò  And these optimizations are harmless in the common 
case 



Relaxed consistency 

ò  If  the common case is that reordering is safe, make the 
programmer tell the CPU when reordering is unsafe 

ò  Details of  the model specify what can be reordered 

ò  Many different proposed models 

ò  Barrier (or fence): common consistency abstraction 

ò  Every memory access before this barrier must be visible to 
other CPUs before any memory access after the barrier 

ò  Confusing to use in practice 



Total Store Order (TSO) 

ò  Model adopted in nearly all x86 CPUs 

ò  All stores leave the CPU in program order 

ò  CPU may load “ahead” of  an unrelated store 

ò  Ex: x = 1; y = z; 

ò  CPU may load z from memory before x is stored 

ò  CPU may not reorder load and store of  same variable 

ò  Atomic instructions are treated like a barrier 



TSO benefits 

ò  Since nearly all locks involve an atomic write, the CPU 
will never reorder a critical region with a lock 

ò  If  you use locks, you rarely need to worry about 
consistency issues 

ò  When do you worry about memory consistency? 

ò  Custom synchronization / lock-free data structures 

ò  Device drivers 



5a Example 

/* Pre condition: A= flag1 = flag2 = 0 */ 

Thread 1 

flag1 = 1 

A = 1 

Register1 = A 

Register2 = flag2 

 

 

 

Thread 2 

flag2 = 1 

A = 2 

Register3 =  A 

Register4 = flag1 

Register 1 = 1, R2 = 0, R3 = 2, R4 = 0 

Both CPUs forward 
write of  A 

internally before 
globally visible 

Reorder 
Load of  R2, 
R4 ahead of  

stores 



5a Example +  barriers 

/* Pre condition: A= flag1 = flag2 = 0 */ 

Thread 1 

flag1 = 1 

A = 1 

barrier 

Register1 = A 

Register2 = flag2 

 

 

 

Thread 2 

flag2 = 1 

A = 2 

barrier 

Register3 =  A 

Register4 = flag1 

 
A = 2 and R2 = 0 or A = 1 and R4 = 0; R2 & R4 != 0 

Flag writes must 
be globally 

visible before A 
is written (TSO) Store A must be 

visible before 
flag reads 

Must be a 
sequential 
ordering of  

store A’s 



5a Example: order 1 

/* Pre condition: A= flag1 = flag2 = 0 */ 

Thread 1 

flag1 = 1 

A = 1 (1) 

barrier 

Register1 = A 

Register2 = flag2 (2) 

 

 

 

Thread 2 

flag2 = 1 

A = 2  (3) 

barrier 

Register3 =  A 

Register4 = flag1 

 
A = 2 and R2 = 0 or A = 1 and R4 = 0; R2 & R4 != 0 



5a Example: order 2 

/* Pre condition: A= flag1 = flag2 = 0 */ 

Thread 1 

flag1 = 1 

A = 1 (3) 

barrier 

Register1 = A 

Register2 = flag2  

 

 

 

Thread 2 

flag2 = 1 

A = 2  (1) 

barrier 

Register3 =  A 

Register4 = flag1 (2)  

 
A = 2 and R2 = 0 or A = 1 and R4 = 0; R2 & R4 != 0 



Summary 

ò  Identifying where to put memory barriers is hard 

ò  Takes a lot of  practice and careful thought 

ò  Looks easy until you try it alone 

ò  But, CPUs would be super-slow on sequential 
consistency 

ò  Understand: Why relaxed consistency?  What is TSO? 
Roughly when do developers need barriers? 

ò  Advice: Take grad architecture; read this paper yearly 


