
Memory Consistency
Don Porter

CSE 506

Logical Diagram

Memory
Management

CPU
Scheduler

User

Kernel

Hardware

Binary
Formats

Consistency

System Calls

Interrupts Disk Net

RCU File System

Device
Drivers

Networking Sync

Memory
Allocators Threads

Today’s Lecture
Memory

Consistency

Difficult topic

ò  Memory consistency models are difficult to understand

ò  Knowing when and how to use memory barriers in your
programs takes a long time to master

ò  I read the long version of this paper about once a year

ò  Started in graduate architecture, still mastering this

ò  Even if you can’t master this material, it is worth
conveying some intuitions and getting you started on the
path

ò  Multi-core programming is increasingly common

Background

ò  In the 90s, people were figuring out how to build and
program shared memory multi-processors

ò  Several hardware and compiler optimizations that
worked well on single-CPU systems were causing
“heisen-bugs” in correct parallel code

ò  Disabling all optimizations made this code correct, but
slow

ò  Various consistency models strike different balances
between optimization and programmability

Simple example

/* Pre condition: flag = 0 */

x = a + b

flag = 1
a isn’t in the cache yet.
(or ALU is busy, etc)

This line is independent of the one above.
Execute first, since result is identical

Extended to multi-
processors

/* Pre condition: flag = 0 */

Thread 1

x = a + b

flag = 1

Thread 2

while (! flag) { 1; }

val = x

flag is acting as a barrier to
synchronize read of x after x

was written

Distinction

ò  Compiler/CPU can figure out when instructions can be
safely reordered within a given thread

ò  Hard to figure out when the order is meaningful to
coordinate with other threads

ò  If you want optimizations (and you do), programmer
MUST give hardware and compiler some hints

ò  Hard to design hints that average programmer can
successfully give the hardware

Definitions

ò  Cache coherence: The protocol by which writes to one
cache invalidate or update other caches

ò  Memory consistency model: How are updates to
memory published from one CPU to another

ò  Reordering between CPU and cache/memory?

ò  Are cache updates/invalidations delivered atomically?

ò  Coherence protocol detail that impacts consistency

ò  Distinction between coherence and consistency muddled

Intuition

ò  On a bus-based multi-processor system (nearly all current
x86 CPUs), a write to the cache immediately invalidates
other caches

ò  Making the write visible to other CPUs

ò  But, the update could spend some time in a write buffer
or register on the CPU

ò  If a later write goes to the cache first, these will become
visible to another CPU out of program order

Sequential Consistency

ò  Simplest possible model

ò  Every program instruction is executed in order

ò  No buffered memory writes

ò  Only one CPU writes to memory at a time

ò  Given a write to address x, all cached values of x are
invalidated before any CPU can write anything else

ò  Simple to reason about

Sequential is too slow

ò  CPUs want to pipeline instructions

ò  Hide high latency instructions

ò  Sequential consistency prevents these optimizations

ò  And these optimizations are harmless in the common
case

Relaxed consistency

ò  If the common case is that reordering is safe, make the
programmer tell the CPU when reordering is unsafe

ò  Details of the model specify what can be reordered

ò  Many different proposed models

ò  Barrier (or fence): common consistency abstraction

ò  Every memory access before this barrier must be visible to
other CPUs before any memory access after the barrier

ò  Confusing to use in practice

Total Store Order (TSO)

ò  Model adopted in nearly all x86 CPUs

ò  All stores leave the CPU in program order

ò  CPU may load “ahead” of an unrelated store

ò  Ex: x = 1; y = z;

ò  CPU may load z from memory before x is stored

ò  CPU may not reorder load and store of same variable

ò  Atomic instructions are treated like a barrier

TSO benefits

ò  Since nearly all locks involve an atomic write, the CPU
will never reorder a critical region with a lock

ò  If you use locks, you rarely need to worry about
consistency issues

ò  When do you worry about memory consistency?

ò  Custom synchronization / lock-free data structures

ò  Device drivers

5a Example

/* Pre condition: A= flag1 = flag2 = 0 */

Thread 1

flag1 = 1

A = 1

Register1 = A

Register2 = flag2

Thread 2

flag2 = 1

A = 2

Register3 = A

Register4 = flag1

Register 1 = 1, R2 = 0, R3 = 2, R4 = 0

Both CPUs forward
write of A

internally before
globally visible

Reorder
Load of R2,
R4 ahead of

stores

5a Example + barriers

/* Pre condition: A= flag1 = flag2 = 0 */

Thread 1

flag1 = 1

A = 1

barrier

Register1 = A

Register2 = flag2

Thread 2

flag2 = 1

A = 2

barrier

Register3 = A

Register4 = flag1

A = 2 and R2 = 0 or A = 1 and R4 = 0; R2 & R4 != 0

Flag writes must
be globally

visible before A
is written (TSO) Store A must be

visible before
flag reads

Must be a
sequential
ordering of

store A’s

5a Example: order 1

/* Pre condition: A= flag1 = flag2 = 0 */

Thread 1

flag1 = 1

A = 1 (1)

barrier

Register1 = A

Register2 = flag2 (2)

Thread 2

flag2 = 1

A = 2 (3)

barrier

Register3 = A

Register4 = flag1

A = 2 and R2 = 0 or A = 1 and R4 = 0; R2 & R4 != 0

5a Example: order 2

/* Pre condition: A= flag1 = flag2 = 0 */

Thread 1

flag1 = 1

A = 1 (3)

barrier

Register1 = A

Register2 = flag2

Thread 2

flag2 = 1

A = 2 (1)

barrier

Register3 = A

Register4 = flag1 (2)

A = 2 and R2 = 0 or A = 1 and R4 = 0; R2 & R4 != 0

Summary

ò  Identifying where to put memory barriers is hard

ò  Takes a lot of practice and careful thought

ò  Looks easy until you try it alone

ò  But, CPUs would be super-slow on sequential
consistency

ò  Understand: Why relaxed consistency? What is TSO?
Roughly when do developers need barriers?

ò  Advice: Take grad architecture; read this paper yearly

