
Block Device Scheduling
Don Porter

CSE 506

Logical Diagram

Memory
Management

CPU
Scheduler

User

Kernel

Hardware

Binary
Formats

Consistency

System Calls

Interrupts Disk Net

RCU File System

Device
Drivers

Networking Sync

Memory
Allocators Threads

Today’s Lecture

Quick Recap

ò  CPU Scheduling

ò  Balance competing concerns with heuristics

ò  What were some goals?

ò  No perfect solution

ò  Today: Block device scheduling

ò  How different from the CPU?

ò  Focus primarily on a traditional hard drive

ò  Extend to new storage media

Block device goals

ò  Throughput

ò  Latency

ò  Safety – file system can be recovered after a crash

ò  Fairness – surprisingly, very little attention is given to
storage access fairness

ò  Hard problem – solutions usually just prevent starvation

ò  Disk quotas for space fairness

Big Picture

VFS

Low-level FS (ext4, BTRFS, etc.)

Page Cache

Block Device

IO Scheduler

Driver

Disk

OS Model of a Block Dev.

ò  Simple array of blocks

ò  Blocks are usually 512 or 4k bytes

Recall: Page Cache

`

Page Cache

Block Dev

Page (blue) w/ 3
buffer heads (green)

Buffer
Heads map
disk blocks

Caching

ò  Obviously, the number 1 trick in the OS designer’s
toolbox is caching disk contents in RAM

ò  Remember the page cache?

ò  Latency – can be hidden by pre-reading data into RAM

ò  And keeping any free RAM full of disk contents

ò  Doesn’t help synchronous reads (that miss in RAM cache)
or synchronous writes

Caching + throughput

ò  Assume that most reads and writes to disk are
asynchronous

ò  Dirty data can be buffered and written at OS’s leisure

ò  Most reads hit in RAM cache – most disk reads are read-
ahead optimizations

ò  Key problem: How to optimally order pending disk I/O
requests?

ò  Hint: it isn’t first-come, first-served

Another view of the
problem

ò  Between page cache and disk, you have a queue of
pending requests

ò  Requests are a tuple of (block #, read/write, buffer addr)

ò  You can reorder these as you like to improve throughput

ò  What reordering heuristic to use? If any?

ò  Heuristic is called the IO Scheduler

A simple disk model

ò  Disks are slow. Why?

ò  Moving parts << circuits

ò  Programming interface: simple array of sectors (blocks)

ò  Physical layout:

ò  Concentric circular “tracks” of blocks on a platter

ò  E.g., sectors 0-9 on innermost track, 10-19 on next track, etc.

ò  Disk arm moves between tracks

ò  Platter rotates under disk head to align w/ requested sector

Disk Model

0 1
2
3

4 5
6
7

Each block
on a sector

Disk
Head

Disk Head
reads at

granularity of
entire sector

Disk spins at a
constant speed.
Sectors rotate

underneath head.

Disk Model

Disk
Head 0 1

2
3

4 5
6
7

8 9
10

11
12

13
14 15 16

17
18
19

20
21

Concentric
tracks

Disk head seeks
to different tracks

Gap between 7
and 8 accounts
for seek time

Many Tracks

Disk
Head

Several (~4) Platters

Platters spin
together at same

speed

Each platter has a head;
All heads seek together

Implications of multiple
platters

ò  Blocks actually striped across platters

ò  Example:

ò  Sector 0 on platter 0

ò  Sector 1 on platter 1 at same position

ò  Sector 2 on platter 2, Sec. 3 on Plat. 3 also at same
position

ò  4 heads can read all 4 sectors simultaneously

3 key latencies

ò  I/O delay: time it takes to read/write a sector

ò  Rotational delay: time the disk head waits for the platter
to rotate desired sector under it

ò  Note: disk rotates continuously at constant speed

ò  Seek delay: time the disk arm takes to move to a different
track

Observations

ò  Latency of a given operation is a function of current disk
arm and platter position

ò  Each request changes these values

ò  Idea: build a model of the disk

ò  Maybe use delay values from measurement or manuals

ò  Use simple math to evaluate latency of each pending
request

ò  Greedy algorithm: always select lowest latency

Example formula

ò  s = seek latency, in time/track

ò  r = rotational latency, in time/sector

ò  i = I/O latency, in seconds

ò  Time = (Δtracks * s) + (Δsectors * r) + I

ò  Note: Δsectors must factor in position after seek is
finished. Why?

Problem with greedy?

ò  “Far” requests will starve

ò  Disk head may just hover around the “middle” tracks

Elevator Algorithm

ò  Require disk arm to move in continuous “sweeps” in and
out

ò  Reorder requests within a sweep

ò  Ex: If disk arm is moving “out,” reorder requests between
the current track and the outside of disk in ascending
order (by block number)

ò  A request for a sector the arm has already passed must be
ordered after the outermost request, in descending order

Elevator Algo, pt. 2

ò  This approach prevents starvation

ò  Sectors at “inside” or “outside” get service after a bounded time

ò  Reasonably good throughput

ò  Sort requests to minimize seek latency

ò  Can get hit with rotational latency pathologies (How?)

ò  Simple to code up!

ò  Programming model hides low-level details; difficult to do fine-
grained optimizations in practice

Pluggable Schedulers

ò  Linux allows the disk scheduler to be replaced

ò  Just like the CPU scheduler

ò  Can choose a different heuristic that favors:

ò  Fairness

ò  Real-time constraints

ò  Performance

Complete Fairness Queue
(CFQ)

ò  Idea: Add a second layer of queues (one per process)

ò  Round-robin promote them to the “real” queue

ò  Goal: Fairly distribute disk bandwidth among tasks

ò  Problems?

ò  Overall throughput likely reduced

ò  Ping-pong disk head around

Deadline Scheduler

ò  Associate expiration times with requests

ò  As requests get close to expiration, make sure they are
deployed

ò  Constrains reordering to ensure some forward progress

ò  Good for real-time applications

Anticipatory Scheduler

ò  Idea: Try to anticipate locality of requests

ò  If process P tends to issue bursts of requests for close disk
blocks,

ò  When you see a request from P, hold the request in the
disk queue for a while

ò  See if more “nearby” requests come in

ò  Then schedule all the requests at once

ò  And coalesce adjacent requests

Optimizations at
Cross-purposes

ò  The disk itself does some optimizations:

ò  Caching

ò  Write requests can sit in a volatile cache for longer than
expected

ò  Reordering requests internally

ò  Can’t assume that requests are serviced in-order

ò  Dependent operations must wait until first finishes

ò  Bad sectors can be remapped to “spares”

ò  Problem: disk arm flailing on an old disk

A note on safety

ò  In Linux, and other OSes, the I/O scheduler can reorder
requests arbitrarily

ò  It is the file system’s job to keep unsafe I/O requests out
of the scheduling queues

Dangerous I/Os

ò  What can make an I/O request unsafe?

ò  File system bookkeeping has invariants on disk

ò  Example: Inodes point to file data blocks; data blocks are
also marked as free in a bitmap

ò  Updates must uphold these invariants

ò  Ex: Write an update to the inode, then the bitmap

ò  What if the system crashes between writes?

ò  Block can end up in two files!!!

3 Simple Rules
(Courtesy of Ganger and McKusick, “Soft Updates” paper)

ò  Never write a pointer to a structure until it has been initialized

ò  Ex: Don’t write a directory entry to disk until the inode has
been written to disk

ò  Never reuse a resource before nullifying all pointers to it

ò  Ex: Before re-allocating a block to a file, write an update to the
inode that references it

ò  Never reset the last pointer to a live resource before a new
pointer has been set

ò  Ex: Renaming a file – write the new directory entry before the
old one (better 2 links than none)

A note on safety

ò  It is the file system’s job to keep unsafe I/O requests out
of the scheduling queues

ò  While these constraints are simple, enforcing them in the
average file system is surprisingly difficult

ò  Journaling helps by creating a log of what you are in the
middle of doing, which can be replayed

ò  (Simpler) Constraint: Journal updates must go to disk
before FS updates

Disks aren’t everything

ò  Flash is increasing in popularity

ò  Different types with slight variations (NAND, NOR, etc)

ò  No moving parts – who cares about block ordering
anymore?

ò  Can only write to a block of flash ~100k times

ò  Can read as much as you want

More in a Flash

ò  Flash reads are generally fast, writes are more expensive

ò  Prefetching has little benefit

ò  Queuing optimizations can take longer than a read

ò  New issue: wear leveling – need to evenly distribute
writes

ò  Flash devices usually have a custom, log-structured FS

ò  Group random writes

Even newer hotness

ò  Byte-addressible, persistent RAMs (BPRAM)

ò  Phase-Change Memory (PCM), Memristors, etc.

ò  Splits the difference between RAM and flash:

ò  Byte-granularity writes (vs. blocks)

ò  Fast reads, slower, high-energy writes

ò  Doesn’t need energy to hold state (DRAM refresh)

ò  Wear an issue (bytes get stuck at last value)

ò  Still in the lab, but getting close

Important research topic

ò  Most work on optimizing storage accessed is tailored to
hard drives

ò  These heuristics are not easily adapted to new media

ò  Future systems will have a mix of disks, flash, PRAM,
DRAM

ò  Does it even make sense to treat them all the same?

Summary

ò  Performance characteristics of disks, flash, BPRAM

ò  Disk scheduling heuristics

ò  Safety constraints for file systems

