l. - : LW | . ‘;‘_ ‘: f’ “)\ &\
- SAINSE W - S Rt e
: as [’ - 4 'ﬁ) LY
5 2 \
a .
A \' b P e £y :, x -~ — gy
| 4 S AN ey 8 -y v sanlot Y I M_-:‘_'..ﬁ‘
;*‘} st F 3 o — v ‘A '.'- r;" I
l\r . L A . 2 W : N 4 J '4”,‘. Q- |
| -~ . 2 -RE 8 a1 b - - x . ‘:: .
T d‘ - - 2™ 2 3
e 77 a8 o g ‘2 e S
R : 4 1 v £ TRTIN
P . N 19 ENE o]
% -~ ’-‘\‘)" : g 5‘
i ~
~
L

- D)on Pors

Background (1)

+ If everything in Unix 1s a file...

Everything in Windows is an object

+ Why not files?

Not all OS abstractions make sense as a file

+ Examples:

Eject button on an optical drive

Network card

Windows object model

Everything, including files, is represented as a generic OS
object

New object types can be created/extended with arbitrary
methods beyond just open/read/write/etc.

Objects are organized into a tree-like hierarchy

Try out Windows object explorer (winobj)

Sysinternals.net

Background (2)

+ A big goal for Windows N'T and 2000 was centralizing
workstation administration at companies/etc.

Create a user account once, can log onto all systems

Vs. creating different accounts on 100s of systems

<+ Active Directory: a Domain server that stores user accounts
for the domain

Log on to a workstation using an AD account
Ex: CS\porter — Domain CS, user id porter

Used by CS department today, centralizes user management

Active Directory

+ Centralized store of users, printers, workstations, etc.
4+ Each machine caches this info as needed

Ex., once you log in, the machine caches your credentials

Big Picture

+ OSes need a “language” to express what 1s allowed and
what 1sn’t

+ Access Control Lists are a common way to do this

+ Structure: “Allowed | Denied: Subject Verb Object”

Unix permissions as ACLs

-TW------- @ 1 porter staff 151841 Nov 10 08:45 win2kacl.pdf
+ Allowed | Denied: Subject Verb Object

+ Allowed: porter read win2kacl.pdf
+ Allowed: porter write win2kacl.pdf
+ Denied: staff read win2kacl.pdf

+ Denied: other * win2kacl.pdf

Fine-grained ACLs

+ Why have subjects other than users/groups?

Not all of my programs are equally trusted
Web browser vs. tax returns

Want to run some applications in a restricted context

+ Still want a unified desktop and file system

Don’t want to log out and log in for different applications

+ Real goal: Associate a restricted context with a program

Why different verbs/
objects

+ Aren’t read, write, and execute good enough?
+ Example: Changing passwords

Yes, you read and write the password file

But not directly (since I shouldn’t be able to change other
passwords)

Really, the administrator gives a trusted utility/service
permission to write entries

And gives you permission to call a specific service
function (change password) with certain arguments
(namely your own user 1id/pass)

Fine-grained access
control lists

+ Keep user accounts and associated permissions

But let users create restricted subsets of their permissions

+ In addition to files, associate ACLs with any object

ACLs can be very long, with different rules for each user/
context

+ And not just RWX rules

But any object method can have different rules

Big picture

+ ACLs are written 1in terms of enterprise-wide principals

Users in AD

Objects that may be system local or on a shared file
system

Object types and verbs usually in AD as well

+ ACLs are associated with a specific object, such as a file

Complete!

+ Assertion: Any security policy you can imagine can be
expressed using ACLs

Probably correct
+ Challenges:

Correct enforcement of ACLs

Efficient enforcement of ACLs

Updating ACLs

Correctly writing the policies/ACLs in the first place

Correct enforcement

Strategy: All policies are evaluated by a single function
Implement the evaluation function once

Audit, test, audit, test until you are sure it looks ok

Keep the job tractable by restricting the input types

All policies, verbs, etc. have to be expressed in a way that
a single function can understand

Shifts some work to application developer

Efticient enforcement

Evaluating a single object’s ACL 1s no big deal

When context matters, the amount of work grows
substantially

Example: The Linux VFS checks permission starting at
the current directory (or common parent), and traverses
each file in the tree

Why?

To check the permissions that you should be allowed to
find this file

Efficiency

+ In addition to the file system, other container objects
create a hierarchy in Windows

+ Trade-off: Either check permissions from top-down on
the entire hierarchy, or propagate updates

Linux: top-down traversal

Alternative: chmod o-w /home/porter

+ Walk each file under /home/porter and also drop other’s
write permission

Efficiency, cont

+ AD decided the propagating updates was more efficient

+ Intuition: Access checks are much more frequent than
changes

Better to make the common case fast!

Harder than 1t looks

L L

Is /home/porter
drwxr-xr--x porter porter 4096 porter

chmod o+r /home/porter/public

chmod o-r porte Recursively change all
- #1s /home/porter children to o-r.

e But do you change pubhc7
orter porter 4096 porter

N ey

e e

e

ra= p—

S

= ———

Issues with propagating

+ Need to distinguish between explicit and inherited
changes to the child’s permissions when propagating

Ex 1: If I take away read permission to my home
directory, distinguish those files with an explicit read
permission from those just inheriting from the parent

Ex 2: If I want to prevent the administrator from reading a
file, make sure the administrator can’t countermand this
by changing the ACL on /home

AD’s propagation solution

+ When an ACL 1s explicitly changed, mark it as such

Vs. inherited permissions

+ When propagating, delete and reapply inherited
permissions

Leave explicit ACLs alone

Challenge:
Policies to ACLs

+ Assertion: Translating policies to ACLs 1s hard
+ Hard to:

Express some policies as ACLs
Write the precise ACL you want

Identify all objects that you want to restrict

+ Much research around developing policy languages that
better balance: human usability and implementation
correctness

This system strongly favors implementation correctness

Example Policy

“Don’t let this file leave the computer”

Ideas?

Create a restricted process context that disables network access
Only give read permission to this context

But, what if this process writes the contents to a new file? Or
over IPC to an unrestricted process?

Does the ACL propagate with all output?

If so, what if the program has a legitimate need to access other
data?

Summary

L L

<+ Basic idea of ACL
<+ How it 1s used in Windows/AD

B <+ How extended for fine granularity

—

- 4+ Challenges with hierarchical enforcement, writing

N1 -

ANV . Eleee

[

e o g s ER T

