
12/6/12	

1	

Access Control Lists
Don Porter

CSE 506

Background (1)

ò  If everything in Unix is a file…

ò  Everything in Windows is an object

ò  Why not files?

ò  Not all OS abstractions make sense as a file

ò  Examples:

ò  Eject button on an optical drive

ò  Network card

Windows object model

ò  Everything, including files, is represented as a generic OS
object

ò  New object types can be created/extended with arbitrary
methods beyond just open/read/write/etc.

ò  Objects are organized into a tree-like hierarchy

ò  Try out Windows object explorer (winobj)

ò  Sysinternals.net

Background (2)

ò  A big goal for Windows NT and 2000 was centralizing
workstation administration at companies/etc.

ò  Create a user account once, can log onto all systems

ò  Vs. creating different accounts on 100s of systems

ò  Active Directory: a Domain server that stores user accounts
for the domain

ò  Log on to a workstation using an AD account

ò  Ex: CS\porter – Domain CS, user id porter

ò  Used by CS department today, centralizes user management

Active Directory

ò  Centralized store of users, printers, workstations, etc.

ò  Each machine caches this info as needed

ò  Ex., once you log in, the machine caches your credentials

Big Picture

ò  OSes need a “language” to express what is allowed and
what isn’t

ò  Access Control Lists are a common way to do this

ò  Structure: “Allowed|Denied: Subject Verb Object”

12/6/12	

2	

Unix permissions as ACLs

-rw-------@ 1 porter staff 151841 Nov 10 08:45 win2kacl.pdf

ò  Allowed|Denied: Subject Verb Object

ò  Allowed: porter read win2kacl.pdf

ò  Allowed: porter write win2kacl.pdf

ò  Denied: staff read win2kacl.pdf

ò  Denied: other * win2kacl.pdf

Fine-grained ACLs

ò  Why have subjects other than users/groups?

ò  Not all of my programs are equally trusted

ò  Web browser vs. tax returns

ò  Want to run some applications in a restricted context

ò  Still want a unified desktop and file system

ò  Don’t want to log out and log in for different applications

ò  Real goal: Associate a restricted context with a program

Why different verbs/
objects

ò  Aren’t read, write, and execute good enough?

ò  Example: Changing passwords

ò  Yes, you read and write the password file

ò  But not directly (since I shouldn’t be able to change other
passwords)

ò  Really, the administrator gives a trusted utility/service
permission to write entries

ò  And gives you permission to call a specific service
function (change password) with certain arguments
(namely your own user id/pass)

Fine-grained access
control lists

ò  Keep user accounts and associated permissions

ò  But let users create restricted subsets of their permissions

ò  In addition to files, associate ACLs with any object

ò  ACLs can be very long, with different rules for each user/
context

ò  And not just RWX rules

ò  But any object method can have different rules

Big picture

ò  ACLs are written in terms of enterprise-wide principals

ò  Users in AD

ò  Objects that may be system local or on a shared file
system

ò  Object types and verbs usually in AD as well

ò  ACLs are associated with a specific object, such as a file

Complete!

ò  Assertion: Any security policy you can imagine can be
expressed using ACLs

ò  Probably correct

ò  Challenges:

ò  Correct enforcement of ACLs

ò  Efficient enforcement of ACLs

ò  Updating ACLs

ò  Correctly writing the policies/ACLs in the first place

12/6/12	

3	

Correct enforcement

ò  Strategy: All policies are evaluated by a single function

ò  Implement the evaluation function once

ò  Audit, test, audit, test until you are sure it looks ok

ò  Keep the job tractable by restricting the input types

ò  All policies, verbs, etc. have to be expressed in a way that
a single function can understand

ò  Shifts some work to application developer

Efficient enforcement

ò  Evaluating a single object’s ACL is no big deal

ò  When context matters, the amount of work grows
substantially

ò  Example: The Linux VFS checks permission starting at
the current directory (or common parent), and traverses
each file in the tree

ò  Why?

ò  To check the permissions that you should be allowed to
find this file

Efficiency

ò  In addition to the file system, other container objects
create a hierarchy in Windows

ò  Trade-off: Either check permissions from top-down on
the entire hierarchy, or propagate updates

ò  Linux: top-down traversal

ò  Alternative: chmod o-w /home/porter

ò  Walk each file under /home/porter and also drop other’s
write permission

Efficiency, cont

ò  AD decided the propagating updates was more efficient

ò  Intuition: Access checks are much more frequent than
changes

ò  Better to make the common case fast!

Harder than it looks

ls /home/porter

drwxr-xr--x porter porter 4096 porter

chmod o+r /home/porter/public

chmod o-r porter

ls /home/porter

drwxr-x---x porter porter 4096 porter

Recursively change all
children to o-r.

But do you change public?

Issues with propagating

ò  Need to distinguish between explicit and inherited
changes to the child’s permissions when propagating

ò  Ex 1: If I take away read permission to my home
directory, distinguish those files with an explicit read
permission from those just inheriting from the parent

ò  Ex 2: If I want to prevent the administrator from reading a
file, make sure the administrator can’t countermand this
by changing the ACL on /home

12/6/12	

4	

AD’s propagation solution

ò  When an ACL is explicitly changed, mark it as such

ò  Vs. inherited permissions

ò  When propagating, delete and reapply inherited
permissions

ò  Leave explicit ACLs alone

Challenge:
Policies to ACLs

ò  Assertion: Translating policies to ACLs is hard

ò  Hard to:

ò  Express some policies as ACLs

ò  Write the precise ACL you want

ò  Identify all objects that you want to restrict

ò  Much research around developing policy languages that
better balance: human usability and implementation
correctness

ò  This system strongly favors implementation correctness

Example Policy

ò  “Don’t let this file leave the computer”

ò  Ideas?

ò  Create a restricted process context that disables network access

ò  Only give read permission to this context

ò  But, what if this process writes the contents to a new file? Or
over IPC to an unrestricted process?

ò  Does the ACL propagate with all output?

ò  If so, what if the program has a legitimate need to access other
data?

Summary

ò  Basic idea of ACL

ò  How it is used in Windows/AD

ò  How extended for fine granularity

ò  Challenges with hierarchical enforcement, writing
policies

