
11/14/11	

1	

x86 Memory Protection
and Translation

Don Porter
CSE 506

Lecture Goal

ò  Understand the hardware tools available on a modern
x86 processor for manipulating and protecting memory

ò  Lab 2: You will program this hardware

ò  Apologies: Material can be a bit dry, but important

ò  Plus, slides will be good reference

ò  But, cool tech tricks:

ò  How does thread-local storage (TLS) work?

ò  An actual (and tough) Microsoft interview question

Undergrad Review

ò  What is:

ò  Virtual memory?

ò  Segmentation?

ò  Paging?

Two System Goals

1) Provide an abstraction of contiguous, isolated virtual
memory to a program

2) Prevent illegal operations

ò  Prevent access to other application or OS memory

ò  Detect failures early (e.g., segfault on address 0)

ò  More recently, prevent exploits that try to execute
program data

11/14/11	

2	

Outline

ò  x86 processor modes

ò  x86 segmentation

ò  x86 page tables

ò  Software vs. Hardware mechanisms

ò  Advanced Features

ò  Interesting applications/problems

x86 Processor Modes

ò  Real mode – walks and talks like a really old x86 chip

ò  State at boot

ò  20-bit address space, direct physical memory access

ò  Segmentation available (no paging)

ò  Protected mode – Standard 32-bit x86 mode

ò  Segmentation and paging

ò  Privilege levels (separate user and kernel)

x86 Processor Modes

ò  Long mode – 64-bit mode (aka amd64, x86_64, etc.)

ò  Very similar to 32-bit mode (protected mode), but bigger

ò  Restrict segmentation use

ò  Garbage collect deprecated instructions

ò  Chips can still run in protected mode with old instructions

Translation Overview

ò  Segmentation cannot be disabled!

ò  But can be a no-op (aka flat mode)

0xdeadbeef

Virtual Address Linear Address Physical Address

0x0eadbeef 0x6eadbeef Segmentation Paging

Protected/Long mode only

11/14/11	

3	

x86 Segmentation

ò  A segment has:

ò  Base address (linear address)

ò  Length

ò  Type (code, data, etc).

Programming model

ò  Segments for: code, data, stack, “extra”

ò  A program can have up to 6 total segments

ò  Segments identified by registers: cs, ds, ss, es, fs, gs

ò  Prefix all memory accesses with desired segment:

ò  mov eax, ds:0x80 (load offset 0x80 from data into eax)

ò  jmp cs:0xab8 (jump execution to code offset 0xab8)

ò  mov ss:0x40, ecx (move ecx to stack offset 0x40)

Programming, cont.

ò  This is cumbersome, so infer code, data and stack
segments by instruction type:

ò  Control-flow instructions use code segment (jump, call)

ò  Stack management (push/pop) uses stack

ò  Most loads/stores use data segment

ò  Note x86 has separate icache and dcache

ò  Extra segments (es, fs, gs) must be used explicitly

Segment management

ò  For safety (without paging), only the OS should define
segments. Why?

ò  Two segment tables the OS creates in memory:

ò  Global – any process can use these segments

ò  Local – segment definitions for a specific process

ò  How does the hardware know where they are?

ò  Dedicated registers: gdtr and ldtr

ò  Privileged instructions: lgdt, lldt

11/14/11	

4	

Segment registers

ò  Set by the OS on fork, context switch, etc.

Table Index (13 bits)
Global or Local

Table? (1 bit) Ring (2 bits)

JOS example 1

ò  Bootloader puts the kernel at phys. address 0x00100000

ò  Kernel is compiled to run at virt. address 0xf0100000

ò  Segmentation to the rescue (kern/entry.S):

ò  What is this code doing?
mygdt:!

 SEG_NULL # null seg!

 SEG(STA_X|STA_R, -KERNBASE, 0xffffffff) # code seg!

 SEG(STA_W, -KERNBASE, 0xffffffff) # data seg!

JOS ex 1, cont.

SEG(STA_X|STA_R, -KERNBASE, 0xffffffff) # code seg!

!

 
!

jmp 0xf01000db8 # virtual addr. (implicit cs seg)!

 
jmp (0xf01000db8 + -0xf0000000)  
!

jmp 0x001000db8 # linear addr.!

Execute and
Read

permission

Offset
-0xf0000000

Segment
Length (4 GB)

Flat segmentation

ò  The above trick is used for booting. We eventually want
to use paging.

ò  How can we make segmentation a no-op?

ò  From kern/pmap.c:

 // 0x8 - kernel code segment!

 [GD_KT >> 3] = SEG(STA_X | STA_R, 0x0, 0xffffffff, 0),!

Execute and
Read

permission

Offset
0x00000000

Segment
Length (4 GB) Ring 0

11/14/11	

5	

Outline

ò  x86 processor modes

ò  x86 segmentation

ò  x86 page tables

ò  Software vs. Hardware mechanisms

ò  Advanced Features

ò  Interesting applications/problems

Paging Model

ò  32 (or 64) bit address space.

ò  Arbitrary mapping of linear to physical pages

ò  Pages are most commonly 4 KB

ò  Newer processors also support page sizes of 2 and 4 MB
and 1 GB

How it works

ò  OS creates a page table

ò  Any old page with entries formatted properly

ò  Hardware interprets entries

ò  cr3 register points to the current page table

ò  Only ring0 can change cr3

Translation Overview

From Intel 80386 Reference Programmer’s Manual

11/14/11	

6	

Example
0xf1084150

0x3b4 0x84 0x150

Page Dir Offset
(Top 10 addr bits:
 0xf10 >> 2)

Page Table Offset
(Next 10 addr bits)

Physical Page Offset
(Low 12 addr bits)

cr3

Entry at cr3+0x3b4 *
sizeof(PTE) Entry at 0x84 *

sizeof(PTE)
Data we want at

offset 0x150

Page Table Entries

ò  Top 20 bits are the physical address of the mapped page

ò  Why 20 bits?

ò  4k page size == 12 bits of offset

ò  Lower 12 bits for flags

Page flags

ò  3 for OS to use however it likes

ò  4 reserved by Intel, just in case

ò  3 for OS to CPU metadata

ò  User/vs kernel page,

ò  Write permission,

ò  Present bit (so we can swap out pages)

ò  2 for CPU to OS metadata

ò  Dirty (page was written), Accessed (page was read)

Back of the envelope

ò  If a page is 4K and an entry is 4 bytes, how many entries
per page?

ò  1k

ò  How large of an address space can 1 page represent?

ò  1k entries * 1page/entry * 4K/page = 4MB

ò  How large can we get with a second level of translation?

ò  1k tables/dir * 1k entries/table * 4k/page = 4 GB

ò  Nice that it works out that way!

11/14/11	

7	

Challenge questions

ò  What is the space overhead of paging?

ò  I.e., how much memory goes to page tables for a 4 GB
address space?

ò  What is the optimal number of levels for a 64 bit page
table?

ò  When would you use a 2 MB or 1 GB page size?

TLB Entries

ò  The CPU caches address translations in the TLB

ò  Translation Lookaside Buffer

ò  The TLB is not coherent with memory, meaning:

ò  If you change a PTE, you need to manually invalidate
cached values

ò  See the tlb_invalidate() function in JOS

Outline

ò  x86 processor modes

ò  x86 segmentation

ò  x86 page tables

ò  Software vs. Hardware mechanisms

ò  Advanced Features

ò  Interesting applications/problems

SW vs. HW

ò  We already saw that TLB shootdown is done by software

ò  Let’s think about other paging features…

11/14/11	

8	

Copy-on-write paging

ò  HW: Traps to the OS on a write to read-only page

ò  OS: Allocates a new copy of the page, updates page
tables

ò  Note: can use one of the “avail” bits for COW status

Async. mmap writeback

ò  Suppose the OS maps a writeable file into a process’s
address space.

ò  When the process exits, which pages to write back to the
file?

ò  Could write them all, but that is wasteful

ò  Check the dirty bit in the PTE!

Swapping

ò  OS clears the present bit for an entry that is swapped out

ò  What happens if you access a stale mapping?

ò  OS gets a page fault the next time it is accessed

ò  OS can replace the page, suspend process until reloaded

Outline

ò  x86 processor modes

ò  x86 segmentation

ò  x86 page tables

ò  Software vs. Hardware mechanisms

ò  Advanced Features

ò  Interesting applications/problems

11/14/11	

9	

Physical Address Extension (PAE)

ò  Period with 32-bit machines + >4GB RAM (2000’s)

ò  Essentially, an early deployment of a 64-bit page table
format

ò  Any given process can only address 4GB

ò  Including OS!

ò  Page tables themselves can address >4GB of physical
pages

No execute (NX) bit

ò  Many security holes arise from bad input

ò  Tricks program to jump to unintended address

ò  That happens to be on heap or stack

ò  And contains bits that form malware

ò  Idea: execute protection can catch these

ò  Feels a bit like code segment, no?

ò  Bit 63 in 64-bit page tables (or 32 bit + PAE)

Nested page tables

ò  Paging tough for early Virtual Machine implementations

ò  Can’t trust a guest OS to correctly modify pages

ò  So, add another layer of paging between host-physical
and guest-physical

And now the fun stuff…

11/14/11	

10	

Thread-local storage (TLS)

ò  Convenient abstraction for per-thread variables

ò  Code just refers to a variable name, accesses private
instance

ò  Example: Windows stores the thread ID (and other info)
in a thread environment block (TEB)

ò  Same code in any thread to access

ò  No notion of a thread offset or id

ò  How to do this?

TLS implementation

ò  Map a few pages per thread into a segment

ò  Use an “extra” segmentation register

ò  Usually gs

ò  Windows TEB in fs

ò  Any thread accesses first byte of TLS like this:

 mov eax, gs:(0x0)

Viva segmentation!

ò  My undergrad OS course treated segmentation as a
historical artifact

ò  Yet still widely (ab)used

ò  Also used for sandboxing in vx32, Native Client

ò  Counterpoint: TLS hack is just compensating for lack of
general-purpose registers

ò  Either way, all but fs and gs are deprecated in x64

Microsoft interview
question

ò  Suppose I am on a low-memory x86 system (<4MB). I
don’t care about swapping or addressing more than 4MB.

ò  How can I keep paging space overhead at one page?

ò  Recall that the CPU requires 2 levels of addr. translation

11/14/11	

11	

Solution sketch

ò  A 4MB address space will only use the low 22 bits of the
address space.

ò  So the first level translation will always hit entry 0

ò  Map the page table’s physical address at entry 0

ò  First translation will “loop” back to the page table

ò  Then use page table normally for 4MB space

ò  Assumes correct programs will not read address 0

ò  Getting null pointers early is nice

ò  Challenge: Refine the solution to still get null pointer exceptions

Conclusion

ò  Lab 2 will be fun

Housekeeping

ò  Please do not show up unannounced

ò  I love to chat with you, but I cannot complete my other
work at the current frequency of interruptions

ò  Send email. I will schedule an appointment if needed, or
come during office hours

ò  Reminder: sign up for course mailing list

ò  Read the whole thing before posting

ò  If you have an issue, please post if resolved (and how!)

Housekeeping 2

ò  Checkpoint your VM before changing things

ò  Instructions to follow soon

ò  You break it, you buy it

ò  I’ll update enrollment tomorrow

