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x86 Memory Protection 
and Translation 

Don Porter 
CSE 506 

Lecture Goal 

ò  Understand the hardware tools available on a modern 
x86 processor for manipulating and protecting memory 

ò  Lab 2: You will program this hardware 

ò  Apologies: Material can be a bit dry, but important 

ò  Plus, slides will be good reference 

ò  But, cool tech tricks: 

ò  How does thread-local storage (TLS) work? 

ò  An actual (and tough) Microsoft interview question 

Undergrad Review 

ò  What is: 

ò  Virtual memory? 

ò  Segmentation? 

ò  Paging? 

Two System Goals 

1) Provide an abstraction of  contiguous, isolated virtual 
memory to a program 

2) Prevent illegal operations 

ò  Prevent access to other application or OS memory 

ò  Detect failures early (e.g., segfault on address 0) 

ò  More recently, prevent exploits that try to execute 
program data 
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Outline 

ò  x86 processor modes 

ò  x86 segmentation 

ò  x86 page tables 

ò  Software vs. Hardware mechanisms 

ò  Advanced Features 

ò  Interesting applications/problems 

x86 Processor Modes 

ò  Real mode – walks and talks like a really old x86 chip 

ò  State at boot 

ò  20-bit address space, direct physical memory access 

ò  Segmentation available (no paging) 

ò  Protected mode – Standard 32-bit x86 mode 

ò  Segmentation and paging 

ò  Privilege levels (separate user and kernel) 

x86 Processor Modes 

ò  Long mode – 64-bit mode (aka amd64, x86_64, etc.) 

ò  Very similar to 32-bit mode (protected mode), but bigger 

ò  Restrict segmentation use 

ò  Garbage collect deprecated instructions 

ò  Chips can still run in protected mode with old instructions 

Translation Overview 

ò  Segmentation cannot be disabled! 

ò  But can be a no-op (aka flat mode) 

0xdeadbeef  

Virtual Address Linear Address Physical Address 

0x0eadbeef  0x6eadbeef  Segmentation Paging 

Protected/Long mode only 



11/14/11	
  

3	
  

x86 Segmentation 

ò  A segment has: 

ò  Base address (linear address) 

ò  Length 

ò  Type (code, data, etc). 

Programming model 

ò  Segments for: code, data, stack, “extra” 

ò  A program can have up to 6 total segments 

ò  Segments identified by registers: cs, ds, ss, es, fs, gs 

ò  Prefix all memory accesses with desired segment: 

ò  mov eax, ds:0x80  (load offset 0x80 from data into eax) 

ò  jmp cs:0xab8          (jump execution to code offset 0xab8) 

ò  mov ss:0x40, ecx    (move ecx to stack offset 0x40) 

Programming, cont. 

ò  This is cumbersome, so infer code, data and stack 
segments by instruction type: 

ò  Control-flow instructions use code segment (jump, call) 

ò  Stack management (push/pop) uses stack 

ò  Most loads/stores use data segment 

ò  Note x86 has separate icache and dcache 

ò  Extra segments (es, fs, gs) must be used explicitly 

Segment management 

ò  For safety (without paging), only the OS should define 
segments.  Why? 

ò  Two segment tables the OS creates in memory: 

ò  Global – any process can use these segments 

ò  Local – segment definitions for a specific process 

ò  How does the hardware know where they are? 

ò  Dedicated registers: gdtr and ldtr 

ò  Privileged instructions: lgdt, lldt 
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Segment registers 

ò  Set by the OS on fork, context switch, etc. 

Table Index (13 bits) 
Global or Local  

Table? (1 bit) Ring (2 bits) 

JOS example 1 

ò  Bootloader puts the kernel at phys. address 0x00100000  

ò  Kernel is compiled to run at virt. address 0xf0100000 

ò  Segmentation to the rescue (kern/entry.S): 

ò  What is this code doing? 
mygdt:!

        SEG_NULL                                # null seg!

        SEG(STA_X|STA_R, -KERNBASE, 0xffffffff) # code seg!

        SEG(STA_W, -KERNBASE, 0xffffffff)       # data seg!

JOS ex 1, cont. 

SEG(STA_X|STA_R, -KERNBASE, 0xffffffff) # code seg!

!

 
!

jmp 0xf01000db8   # virtual addr. (implicit cs seg)!

 
jmp (0xf01000db8 + -0xf0000000)  
!

jmp 0x001000db8   # linear addr.!

Execute and 
Read 

permission  

Offset 
-0xf0000000  

Segment 
Length (4 GB) 

Flat segmentation 

ò  The above trick is used for booting.  We eventually want 
to use paging. 

ò  How can we make segmentation a no-op? 

ò  From kern/pmap.c: 

 // 0x8 - kernel code segment!

 [GD_KT >> 3] = SEG(STA_X | STA_R, 0x0, 0xffffffff, 0),!

Execute and 
Read 

permission  

Offset 
0x00000000  

Segment 
Length (4 GB) Ring 0 
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Outline 

ò  x86 processor modes 

ò  x86 segmentation 

ò  x86 page tables 

ò  Software vs. Hardware mechanisms 

ò  Advanced Features 

ò  Interesting applications/problems 

Paging Model 

ò  32 (or 64) bit address space. 

ò  Arbitrary mapping of  linear to physical pages 

ò  Pages are most commonly 4 KB 

ò  Newer processors also support page sizes of  2 and 4 MB 
and 1 GB 

How it works 

ò  OS creates a page table 

ò  Any old page with entries formatted properly 

ò  Hardware interprets entries 

ò  cr3 register points to the current page table 

ò  Only ring0 can change cr3 

Translation Overview 

 
From Intel 80386 Reference Programmer’s Manual 
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Example 
0xf1084150 

0x3b4 0x84 0x150 

Page Dir Offset 
(Top 10 addr bits: 
  0xf10 >> 2) 

Page Table Offset 
(Next 10 addr bits) 

Physical Page Offset 
(Low 12 addr bits) 

cr3 

Entry at cr3+0x3b4 * 
sizeof(PTE) Entry at 0x84 * 

sizeof(PTE) 
Data we want at 

offset 0x150 

Page Table Entries 

ò  Top 20 bits are the physical address of  the mapped page 

ò  Why 20 bits? 

ò  4k page size == 12 bits of  offset 

ò  Lower 12 bits for flags 

Page flags 

ò  3 for OS to use however it likes 

ò  4 reserved by Intel, just in case 

ò  3 for OS to CPU metadata 

ò  User/vs kernel page,  

ò  Write permission,  

ò  Present bit (so we can swap out pages) 

ò  2 for CPU to OS metadata 

ò  Dirty (page was written), Accessed (page was read) 

Back of  the envelope 

ò  If  a page is 4K and an entry is 4 bytes, how many entries 
per page? 

ò  1k 

ò  How large of  an address space can 1 page represent? 

ò  1k entries * 1page/entry * 4K/page = 4MB 

ò  How large can we get with a second level of  translation? 

ò  1k tables/dir * 1k entries/table * 4k/page = 4 GB 

ò  Nice that it works out that way! 
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Challenge questions 

ò  What is the space overhead of  paging? 

ò  I.e., how much memory goes to page tables for a 4 GB 
address space? 

ò  What is the optimal number of  levels for a 64 bit page 
table? 

ò  When would you use a 2 MB or 1 GB page size? 

TLB Entries 

ò  The CPU caches address translations in the TLB 

ò  Translation Lookaside Buffer 

ò  The TLB is not coherent with memory, meaning: 

ò  If you change a PTE, you need to manually invalidate 
cached values 

ò  See the tlb_invalidate() function in JOS 

Outline 

ò  x86 processor modes 

ò  x86 segmentation 

ò  x86 page tables 

ò  Software vs. Hardware mechanisms 

ò  Advanced Features 

ò  Interesting applications/problems 

SW vs. HW 

ò  We already saw that TLB shootdown is done by software 

ò  Let’s think about other paging features… 
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Copy-on-write paging 

ò  HW: Traps to the OS on a write to read-only page 

ò  OS: Allocates a new copy of  the page, updates page 
tables 

ò  Note: can use one of  the “avail” bits for COW status 

Async. mmap writeback 

ò  Suppose the OS maps a writeable file into a process’s 
address space. 

ò  When the process exits, which pages to write back to the 
file? 

ò  Could write them all, but that is wasteful 

ò  Check the dirty bit in the PTE! 

Swapping 

ò  OS clears the present bit for an entry that is swapped out 

ò  What happens if  you access a stale mapping? 

ò  OS gets a page fault the next time it is accessed 

ò  OS can replace the page, suspend process until reloaded 

Outline 

ò  x86 processor modes 

ò  x86 segmentation 

ò  x86 page tables 

ò  Software vs. Hardware mechanisms 

ò  Advanced Features 

ò  Interesting applications/problems 



11/14/11	
  

9	
  

Physical Address Extension (PAE) 

ò  Period with 32-bit machines + >4GB RAM (2000’s) 

ò  Essentially, an early deployment of  a 64-bit page table 
format 

ò  Any given process can only address 4GB 

ò  Including OS! 

ò  Page tables themselves can address >4GB of  physical 
pages 

No execute (NX) bit 

ò  Many security holes arise from bad input 

ò  Tricks program to jump to unintended address 

ò  That happens to be on heap or stack 

ò  And contains bits that form malware 

ò  Idea: execute protection can catch these 

ò  Feels a bit like code segment, no? 

ò  Bit 63 in 64-bit page tables (or 32 bit + PAE) 

Nested page tables 

ò  Paging tough for early Virtual Machine implementations 

ò  Can’t trust a guest OS to correctly modify pages 

ò   So, add another layer of  paging between host-physical 
and guest-physical 

And now the fun stuff… 



11/14/11	
  

10	
  

Thread-local storage (TLS) 

ò  Convenient abstraction for per-thread variables 

ò  Code just refers to a variable name, accesses private 
instance 

ò  Example: Windows stores the thread ID (and other info) 
in a thread environment block (TEB) 

ò  Same code in any thread to access 

ò  No notion of  a thread offset or id 

ò  How to do this? 

TLS implementation 

ò  Map a few pages per thread into a segment 

ò  Use an “extra” segmentation register 

ò  Usually gs 

ò  Windows TEB in fs 

ò  Any thread accesses first byte of  TLS like this: 

 mov eax, gs:(0x0) 

Viva segmentation! 

ò  My undergrad OS course treated segmentation as a 
historical artifact 

ò  Yet still widely (ab)used 

ò  Also used for sandboxing in vx32, Native Client 

ò  Counterpoint: TLS hack is just compensating for lack of  
general-purpose registers 

ò  Either way, all but fs and gs are deprecated in x64 

Microsoft interview 
question 

ò  Suppose I am on a low-memory x86 system (<4MB).  I 
don’t care about swapping or addressing more than 4MB. 

ò  How can I keep paging space overhead at one page? 

ò  Recall that the CPU requires 2 levels of  addr. translation 
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Solution sketch 

ò  A 4MB address space will only use the low 22 bits of  the 
address space. 

ò  So the first level translation will always hit entry 0 

ò  Map the page table’s physical address at entry 0 

ò  First translation will “loop” back to the page table 

ò  Then use page table normally for 4MB space 

ò  Assumes correct programs will not read address 0 

ò  Getting null pointers early is nice 

ò  Challenge: Refine the solution to still get null pointer exceptions 

Conclusion 

ò  Lab 2 will be fun 

Housekeeping 

ò  Please do not show up unannounced 

ò  I love to chat with you, but I cannot complete my other 
work at the current frequency of  interruptions 

ò  Send email.  I will schedule an appointment if  needed, or 
come during office hours 

ò  Reminder: sign up for course mailing list 

ò  Read the whole thing before posting 

ò  If  you have an issue, please post if  resolved (and how!) 

Housekeeping 2 

ò  Checkpoint your VM before changing things 

ò  Instructions to follow soon 

ò  You break it, you buy it 

ò  I’ll update enrollment tomorrow 


