
11/14/11	

1	

VFS, Continued
Don Porter

CSE 506

Previous lectures

ò  Basic VFS abstractions

ò  Including data structures

ò  And programming model (file system)

ò  And APIs

ò  Some system call examples

ò  Walk through some system calls

ò  Plus synchronization issues

Today’s goal: Synthesis

ò  Walk through two system calls in some detail

ò  Open and read

ò  Too much code to cover all FS system calls

Quick review: dentry

ò  What purpose does a dentry serve?

ò  Essentially maps a path name to an inode

ò  More in 2 slides on how to find a dentry

ò  Dentries are cached in memory

ò  Only “recently” accessed parts of a directory are in
memory; others may need to be read from disk

ò  Dentries can be freed to reclaim memory (like pages)

11/14/11	

2	

Dentry caching

ò  3 Cases for a dentry:

ò  In memory (exists)

ò  Not in memory (doesn’t exist)

ò  Not in memory (on disk/evicted for space or never used)

ò  How to distinguish last 2 cases?

ò  Case 2 can generate a lot of needless disk traffic

ò  “Negative dentry” – Dentry with a NULL inode pointer

Dentry tracking

ò  Dentries are stored in four data structures:

ò  A hash table (for quick lookup)

ò  A LRU list (for freeing cache space wisely)

ò  A child list of subdirectories (mainly for freeing)

ò  An alias list (to do reverse mapping of inode -> dentries)

ò  Recall that many directories can map one inode

Open summary

ò  Key kernel tasks:

ò  Map a human-readable path name to an inode

ò  Check access permissions, from / to the file

ò  Possibly create or truncate the file (O_CREAT,
O_TRUNC)

ò  Create a file descriptor

Open arguments

ò  int open(const char *path, int flags, int mode);

ò  Path: file name

ò  Flags: many (see manual page), include read/write perms

ò  Mode: If a file is created, what permissions should it have?
(e.g., 0755)

ò  Return value: File handle index (>= 0 on success)

ò  Or (0 –errno) on failure

11/14/11	

3	

Absolute vs. Relative
Paths

ò  Each process has a current root and working directory

ò  Stored in current->fs-> (fs, pwd---respectively)

ò  Specifically, these are dentry pointers (not strings)

ò  Note that these are shared by threads

ò  Why have a current root directory?

ò  Some programs are ‘chroot jailed’ and should not be able
to access anything outside of the directory

More on paths

ò  An absolute path starts with the ‘/’ character

ò  E.g., /home/porter/foo.txt, /lib/libc.so

ò  A relative path starts with anything else:

ò  E.g., vfs.pptx, ../../etc/apache2.conf

ò  First character dictates where in the dcache to start
searching for a path

Search

ò  Executes in a loop, starting with the root directory or the
current working directory

ò  Treats ‘/’ character in the path as a component delimiter

ò  Each iteration looks up part of the path

ò  E.g., ‘/home/porter/foo’ would look up ‘home’,
‘porter’, then ‘foo’, starting at /

Detail (iteration 1)

ò  For current dentry (/), dereference the inode

ò  Check access permission (recall, mode is stored in inode)

ò  Use a permission() function pointer associated with the
inode – can be overridden by a security module (such as
SeLinux, or AppArmor), or the file system

ò  If ok, look at next path component (/home)

11/14/11	

4	

Detail (2)

ò  Some special cases:

ò  If next component is a ‘.’, just skip to next component

ò  If next component is a ‘..’, try to move up to parent

ò  Catch the special case where the current dentry is the
process root directory and treat this as a no-op

ò  If not a ‘.’ or ‘..’:

ò  Compute a hash value to find bucket in d_hash table

ò  Hash is based on full path (e.g., /home/foo, not ‘foo’)

ò  Search the d_hash bucket at this hash value

Detail (3)

ò  If there isn’t a dentry in the hash bucket, calls the lookup()
method on parent inode (provided by FS), to read the dentry
from disk

ò  Or the network, or kernel data structures…

ò  If found, check whether it is a symbolic link

ò  If so, call inode->readlink() (also provided by FS) to get the path
stored in the symlink

ò  Then continue next iteration

ò  If not a symlink, check if it is a directory

ò  If not a directory and not last element, we have a bad path

Iteration 2

ò  We have dentry/inode for /home, now finding porter

ò  Check permission in /home

ò  Hash /home/porter, find dentry

ò  Confirm not ‘.’, ‘..’, or a symlink

ò  Confirm is a directory

ò  Recur with dentry/inode for /home/porter, search for
foo

Symlink problems

ò  What if /home/porter/foo is a symlink to ‘foo’?

ò  Kernel gets in an infinite loop

ò  Can be more subtle:

ò  foo -> bar

ò  bar -> baz

ò  baz -> foo

11/14/11	

5	

Preventing infinite
recursion

ò  More simple heuristics

ò  If more than 40 symlinks resolved, quit with –ELOOP

ò  If more than 6 symlinks resolved in a row without a non-
symlink inode, quit with –ELOOP

ò  Maybe add some special logic for obvious self-references

ò  Can prevent execution of a legitimate 41 symlink path

ò  Generally considered reasonable

Back to open()

ò  Key tasks:

ò  Map a human-readable path name to an inode

ò  Check access permissions, from / to the file

ò  Possibly create or truncate the file (O_CREAT,
O_TRUNC)

ò  Create a file descriptor

ò  We’ve seen how steps 1 and 2 are done

Creation

ò  Handled as part of search; treat last item specially

ò  Usually, if an item isn’t found, search returns an error

ò  If last item (foo) exists and O_EXCL flag set, fail

ò  If O_EXCL is not set, return existing dentry

ò  If it does not exist, call fs create method to make a new
inode and dentry

ò  This is then returned

File descriptors

ò  User-level file descriptors are an index into a process-
local table of struct files

ò  A struct file stores a dentry pointer, an offset into the file,
and caches the access mode (read/write/both)

ò  The table also tracks which entries are valid

ò  Open marks a free table entry as ‘in use’

ò  If full, create a new table 2x the size and copy old one

ò  Allocates a new file struct and puts a pointer in table

11/14/11	

6	

Truncation

ò  The O_TRUNC flag causes the file to be truncated to
zero bytes at the end of opening

ò  This is done with a routine that frees cached pages,
updates inode size, and calls an FS-provided truncate()
hook

ò  This routine generally updates on-disk data, freeing stored
blocks

Open questions?

Now on to read

ò  int read(int fd, void *buf, size_t bytes);

ò  fd: File descriptor index

ò  buf: Buffer kernel writes the read data into

ò  bytes: Number of bytes requested

ò  Returns: bytes read (if >= 0), or –errno

Simple steps

ò  Translate int fd to a struct file (if valid)

ò  Check cached permissions in the file

ò  Increase reference count

ò  Validate that sizeof(buf) >= bytes requested

ò  And that buf is a valid address

ò  Do read() routine associated with file (FS-specific)

ò  Drop refcount, return bytes read

11/14/11	

7	

Hard part: Getting data

ò  In addition to an offset, the file structure caches a pointer
to the address space associated with the file

ò  Recall: this includes the radix tree of in-memory pages

ò  Search the radix tree for the appropriate page of data

ò  If not found, or PG_uptodate flag not set, re-read from
disk

ò  If found, copy into the user buffer (up to inode->i_size)

Requesting a page read

ò  First, the page must be locked

ò  Atomically set a lock bit in the page descriptor

ò  If this fails, the process sleeps until page is unlocked

ò  Once the page is locked, double-check that no one else
has re-read from disk before locking the page

ò  Also, check that no one has freed the page while we were
waiting (by changing the mapping field)

ò  Invoke the address_space->readpage() method (set by
FS)

Generic readpage

ò  Recall that most disk blocks are 512 bytes, yet pages are
4k

ò  Block size stored in inode (blkbits)

ò  Each file system provides a get_block() routine that gives
the logical block number on disk

ò  Check for edge cases (like a sparse file with missing
blocks on disk)

More readpage

ò  If the blocks are contiguous on disk, read entire page as a
batch

ò  If not, read each block one at a time

ò  These block requests are sent to the backing device I/O
scheduler (recall lecture on I/O schedulers)

11/14/11	

8	

After readpage

ò  Mark the page accessed (for LRU reclaiming)

ò  Unlock the page

ò  Then copy the data, update file access time, advance file
offset, etc.

Copying data to user

ò  Kernel needs to be sure that buffer is a valid address

ò  How to do it?

ò  Can walk appropriate page table entries

ò  What could go wrong?

ò  Concurrent munmap from another thread

ò  Page might be lazy allocated by kernel

Trick

ò  What if we don’t do all of this validation?

ò  Looks like kernel had a page fault

ò  Usually REALLY BAD

ò  Idea: set a kernel flag that says we are in copy_to_user

ò  If a page fault happens for a user address, don’t panic

ò  Just handle demand faults

ò  If the page is really bad, write an error code into a register
so that it breaks the write loop; check after return

Benefits

ò  This trick actually speeds up the common case (buf is
ok)

ò  Avoids complexity of handling weird race conditions

ò  Still need to be sure that buf address isn’t in the kernel

11/14/11	

9	

Summary

ò  Goal: Synthesize key VFS concepts, data structures, and
optimizations with concrete examples

ò  Understand key steps in open and read system calls

