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Context

+ Multi-threaded application; more threads than CPUs
+ Simple threading approach:

Create a kernel thread for each application thread
OS does all the scheduling work
Simple as that!

+ Alternative:

Map the abstraction of multiple threads onto 1+ kernel
threads



Intuition

+ 2 user threads on 1 kernel thread; start with explicit yield

2 stacks
On each yield():

+ Save registers, switch stacks just like kernel does

<+ OS schedules the one kernel thread

Programmer controls how much time for each user thread



Extensions

+ Can map m user threads onto n kernel threads (m >= n)

Bookkeeping gets much more complicated
(synchronization)

+ Can do crude preemption using:

Certain functions (locks)

Timer signals from OS



+ Context switching overheads

+ Finer-grained scheduling control

-+ Blocking I/0

Why bother?




Context Switching
Overheads

+ Recall: Forking a thread halves your time slice

Takes a few hundred cycles to get in/out of kernel
+ Plus cost of switching a thread

Time in the scheduler counts against your timeslice

<+ 2 threads, 1 CPU

If I can run the context switching code locally (avoiding
trap overheads, etc), my threads get to run slightly longer!

Stack switching code works 1n userspace with few changes



Finer-Grained Scheduling
Control

+ Example: Thread 1 has a lock, Thread 2 waiting for lock

Thread 1’s quantum expired
Thread 2 just spinning until its quantum expires

Wouldn'’t 1t be nice to donate Thread 2’s quantum to
Thread 17

+ Both threads will make faster progress!

+ Similar problems with producer/consumer, barriers, etc.

+ Deeper problem: Application’s data flow and
synchronization patterns hard for kernel to infer



Blocking I/0

+ I have 2 threads, they each get half of the application’s
quantum
If A blocks on I/0 and B 1s using the CPU
B gets half the CPU time
A’s quantum 1s “lost” (at least in some schedulers)

<+ Modern Linux scheduler:

A gets a priority boost

Maybe application cares more about B’s CPU time...



Scheduler Activations

+ Observations:
Kernel context switching substantially more expensive
than user context switching
Kernel can’t infer application goals as well as programmer

+ nice() helps, but clumsy

+ Thesis: Highly tuned multithreading should be done 1n
the application

Better kernel interfaces needed



What 1s a scheduler
activation?

<+ Like a kernel thread: a kernel stack and a user-mode stack

Represents the allocation of a CPU time slice

4+ Not like a kernel thread:

Does not automatically resume a user thread
Goes to one of a few well-defined “upcalls”
+ New timeslice, Timeslice expired, Blocked SA, Unblocked SA

+ Upcalls must be reentrant (called on many CPUs at same time)

User scheduler decides what to run



User-level threading

+ Independent of SA’s, user scheduler creates:

Analog of task struct for each thread

+ Stores register state when preempted

Stack for each thread

Some sort of run queue

+ Simple list in the paper

+ Application free to use O(1), CFS, round-robin, etc.

+ User scheduler keeps kernel notified of how many
runnable tasks it has (via system call)



Process Start

o9 *oQ-o

+ Rather than jump to main, kernel upcalls to scheduler

<+ New timeslice

_ + Scheduler initially selects first thread and starts in
R main” =




New Thread

<+ When a new thread is created:

Scheduler 1ssues a system call, indicating it could use
another CPU

If a CPU is free, kernel creates a new SA

Upcalls to “New timeslice”

Scheduler selects new thread to run; loads register state



Preemption

+ Suppose I have 4 threads running (T 0-3), in SAs A-D
+ TO gets preempted, CPU taken away (SA A dead)

+ Kernel selects another SA to terminate (say B)

Creates a SA E that gets rest of B’s timeslice
Calls “Timeslice expired upcall” to communicate:
+ A s expired, TO’s register state

+ B s also expired now, T1’s register state

<+ User scheduler decides which one to resume 1in E



Blocking System Call

+ Suppose Thread 1 in SA A calls a blocking system call

E.g., read from a network socket, no data available

+ Kernel creates a new SA B and upcalls to “Blocked SA”

Indicates that SA A 1s blocked

B gets rest of A’s timeslice

+ User scheduler figures out that T1 was running on SA A

Updates bookkeeping
Selects another thread to run, or yields the CPU with a syscall



Un-blocking a thread

+ Suppose the network read gets data, T1 1s unblocked

Kernel finishes system call

+ Kernel creates a new SA, upcalls to “unblocked thread”

Communicates register state of T1
Perhaps including return code in an updated register
Just loading these registers 1s enough to resume execution

4+ No iret needed!

+ T1 goes back on the runnable list---maybe selected



Downsides

+ A random user thread gets preempted on every
scheduling-related event

Not free!

User scheduling must do better than kernel by a big
enough margin to offset these overheads

+ Moreover, the most important thread may be the one to
get preempted, slowing down critical path

Potential optimization: communicate to kernel a
preference for which activation gets preempted to notify of
an event



User Timeslicing?

+ Suppose I have 8 threads and the system has 4 CPUs:

I will only ever get 4 SAs
+ Suppose I am the only thing running and I get to keep
them all forever
How do I context switch to the other threads?

No upcall for a timer interrupt

Guess: use a timer signal (delivered on a system call
boundary; pray a thread issues a system call periodically)



Preemption in the
scheduler?

+ Edge case: A SA 1s preempted in the scheduler itself

Holding a scheduler lock
+ Uh-oh: Can’t even service its own upcall!

+ Solution: Set a flag 1n a thread that has a lock

If a preemption upcall comes through while a lock 1s held,
immediately reschedule the thread long enough to release
the lock and clear the flag

Thread must then jump back to the upcall for proper
scheduling



Scheduler Activation
Discussion

+ Scheduler activations have not been widely adopted

An anomaly for this course

Still an important paper to read:

+ Think creatively about “right” abstractions

+ Clear explanation of user-level threading issues

+ People build user threads on kernel threads, but more
challenging without SAs

Hard to detect preemption of another thread and yield

Switch out blocking calls for non-blocking versions; reschedule
on waiting---Iimited in practice



Meta-observation

Much of 90s OS research focused on giving
programmers more control over performance

E.g., microkernels, extensible OSes, etc.

Argument: clumsy heuristics or awkward abstractions
are keeping me from getting full performance of my
hardware

Some won the day, some didn’t

High-performance databases generally get direct control
over disk(s) rather than go through the file system



User-threading 1n practice

+ Has come in and out of vogue

Correlated with how efficiently the OS creates and context
switches threads

+ Linux 2.4 — Threading was really slow

User-level thread packages were hot

+ Linux 2.6 — Substantial effort went into tuning threads

E.g., Most JVMs abandoned user-threads



Summary

User-level threading 1s about performance, either:

Avoiding high kernel threading overheads, or

Hand-optimizing scheduling behavior for an unusual
application

User-threading is challenging to implement on traditional OS
abstractions
Scheduler activations: the right abstraction?

Explicit representation of CPU time slices
Upcalls to user scheduler to context switch
Communicate preempted register state



