
User-level scheduling
Don Porter

CSE 506

Context

ò  Multi-threaded application; more threads than CPUs

ò  Simple threading approach:

ò  Create a kernel thread for each application thread

ò  OS does all the scheduling work

ò  Simple as that!

ò  Alternative:

ò  Map the abstraction of multiple threads onto 1+ kernel
threads

Intuition

ò  2 user threads on 1 kernel thread; start with explicit yield

ò  2 stacks

ò  On each yield():

ò  Save registers, switch stacks just like kernel does

ò  OS schedules the one kernel thread

ò  Programmer controls how much time for each user thread

Extensions

ò  Can map m user threads onto n kernel threads (m >= n)

ò  Bookkeeping gets much more complicated
(synchronization)

ò  Can do crude preemption using:

ò  Certain functions (locks)

ò  Timer signals from OS

Why bother?

ò  Context switching overheads

ò  Finer-grained scheduling control

ò  Blocking I/O

Context Switching
Overheads

ò  Recall: Forking a thread halves your time slice

ò  Takes a few hundred cycles to get in/out of kernel

ò  Plus cost of switching a thread

ò  Time in the scheduler counts against your timeslice

ò  2 threads, 1 CPU

ò  If I can run the context switching code locally (avoiding
trap overheads, etc), my threads get to run slightly longer!

ò  Stack switching code works in userspace with few changes

Finer-Grained Scheduling
Control

ò  Example: Thread 1 has a lock, Thread 2 waiting for lock

ò  Thread 1’s quantum expired

ò  Thread 2 just spinning until its quantum expires

ò  Wouldn’t it be nice to donate Thread 2’s quantum to
Thread 1?
ò  Both threads will make faster progress!

ò  Similar problems with producer/consumer, barriers, etc.

ò  Deeper problem: Application’s data flow and
synchronization patterns hard for kernel to infer

Blocking I/O

ò  I have 2 threads, they each get half of the application’s
quantum

ò  If A blocks on I/O and B is using the CPU

ò  B gets half the CPU time

ò  A’s quantum is “lost” (at least in some schedulers)

ò  Modern Linux scheduler:

ò  A gets a priority boost

ò  Maybe application cares more about B’s CPU time…

Scheduler Activations

ò  Observations:

ò  Kernel context switching substantially more expensive
than user context switching

ò  Kernel can’t infer application goals as well as programmer

ò  nice() helps, but clumsy

ò  Thesis: Highly tuned multithreading should be done in
the application

ò  Better kernel interfaces needed

What is a scheduler
activation?

ò  Like a kernel thread: a kernel stack and a user-mode stack

ò  Represents the allocation of a CPU time slice

ò  Not like a kernel thread:

ò  Does not automatically resume a user thread

ò  Goes to one of a few well-defined “upcalls”

ò  New timeslice, Timeslice expired, Blocked SA, Unblocked SA

ò  Upcalls must be reentrant (called on many CPUs at same time)

ò  User scheduler decides what to run

User-level threading

ò  Independent of SA’s, user scheduler creates:

ò  Analog of task struct for each thread

ò  Stores register state when preempted

ò  Stack for each thread

ò  Some sort of run queue
ò  Simple list in the paper

ò  Application free to use O(1), CFS, round-robin, etc.

ò  User scheduler keeps kernel notified of how many
runnable tasks it has (via system call)

Process Start

ò  Rather than jump to main, kernel upcalls to scheduler

ò  New timeslice

ò  Scheduler initially selects first thread and starts in
“main”

New Thread

ò  When a new thread is created:

ò  Scheduler issues a system call, indicating it could use
another CPU

ò  If a CPU is free, kernel creates a new SA

ò  Upcalls to “New timeslice”

ò  Scheduler selects new thread to run; loads register state

Preemption

ò  Suppose I have 4 threads running (T 0-3), in SAs A-D

ò  T0 gets preempted, CPU taken away (SA A dead)

ò  Kernel selects another SA to terminate (say B)

ò  Creates a SA E that gets rest of B’s timeslice

ò  Calls “Timeslice expired upcall” to communicate:

ò  A is expired, T0’s register state

ò  B is also expired now, T1’s register state

ò  User scheduler decides which one to resume in E

Blocking System Call

ò  Suppose Thread 1 in SA A calls a blocking system call

ò  E.g., read from a network socket, no data available

ò  Kernel creates a new SA B and upcalls to “Blocked SA”

ò  Indicates that SA A is blocked

ò  B gets rest of A’s timeslice

ò  User scheduler figures out that T1 was running on SA A

ò  Updates bookkeeping

ò  Selects another thread to run, or yields the CPU with a syscall

Un-blocking a thread

ò  Suppose the network read gets data, T1 is unblocked

ò  Kernel finishes system call

ò  Kernel creates a new SA, upcalls to “unblocked thread”

ò  Communicates register state of T1

ò  Perhaps including return code in an updated register

ò  Just loading these registers is enough to resume execution

ò  No iret needed!

ò  T1 goes back on the runnable list---maybe selected

Downsides

ò  A random user thread gets preempted on every
scheduling-related event

ò  Not free!

ò  User scheduling must do better than kernel by a big
enough margin to offset these overheads

ò  Moreover, the most important thread may be the one to
get preempted, slowing down critical path

ò  Potential optimization: communicate to kernel a
preference for which activation gets preempted to notify of
an event

User Timeslicing?

ò  Suppose I have 8 threads and the system has 4 CPUs:

ò  I will only ever get 4 SAs

ò  Suppose I am the only thing running and I get to keep
them all forever

ò  How do I context switch to the other threads?

ò  No upcall for a timer interrupt

ò  Guess: use a timer signal (delivered on a system call
boundary; pray a thread issues a system call periodically)

Preemption in the
scheduler?

ò  Edge case: A SA is preempted in the scheduler itself

ò  Holding a scheduler lock

ò  Uh-oh: Can’t even service its own upcall!

ò  Solution: Set a flag in a thread that has a lock

ò  If a preemption upcall comes through while a lock is held,
immediately reschedule the thread long enough to release
the lock and clear the flag

ò  Thread must then jump back to the upcall for proper
scheduling

Scheduler Activation
Discussion

ò  Scheduler activations have not been widely adopted

ò  An anomaly for this course

ò  Still an important paper to read:

ò  Think creatively about “right” abstractions

ò  Clear explanation of user-level threading issues

ò  People build user threads on kernel threads, but more
challenging without SAs

ò  Hard to detect preemption of another thread and yield

ò  Switch out blocking calls for non-blocking versions; reschedule
on waiting---limited in practice

Meta-observation

ò  Much of 90s OS research focused on giving
programmers more control over performance

ò  E.g., microkernels, extensible OSes, etc.

ò  Argument: clumsy heuristics or awkward abstractions
are keeping me from getting full performance of my
hardware

ò  Some won the day, some didn’t

ò  High-performance databases generally get direct control
over disk(s) rather than go through the file system

User-threading in practice

ò  Has come in and out of vogue

ò  Correlated with how efficiently the OS creates and context
switches threads

ò  Linux 2.4 – Threading was really slow

ò  User-level thread packages were hot

ò  Linux 2.6 – Substantial effort went into tuning threads

ò  E.g., Most JVMs abandoned user-threads

Summary

ò  User-level threading is about performance, either:

ò  Avoiding high kernel threading overheads, or

ò  Hand-optimizing scheduling behavior for an unusual
application

ò  User-threading is challenging to implement on traditional OS
abstractions

ò  Scheduler activations: the right abstraction?

ò  Explicit representation of CPU time slices

ò  Upcalls to user scheduler to context switch

ò  Communicate preempted register state

