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Context 

ò  Multi-threaded application; more threads than CPUs 

ò  Simple threading approach:  

ò  Create a kernel thread for each application thread 

ò  OS does all the scheduling work 

ò  Simple as that! 

ò  Alternative: 

ò  Map the abstraction of  multiple threads onto 1+ kernel 
threads 



Intuition 

ò  2 user threads on 1 kernel thread; start with explicit yield 

ò  2 stacks 

ò  On each yield(): 

ò  Save registers, switch stacks just like kernel does 

ò  OS schedules the one kernel thread 

ò  Programmer controls how much time for each user thread  



Extensions 

ò  Can map m user threads onto n kernel threads (m >= n) 

ò  Bookkeeping gets much more complicated 
(synchronization) 

ò  Can do crude preemption using: 

ò  Certain functions (locks) 

ò  Timer signals from OS 



Why bother? 

ò  Context switching overheads 

ò  Finer-grained scheduling control 

ò  Blocking I/O 



Context Switching 
Overheads 

ò  Recall: Forking a thread halves your time slice 

ò  Takes a few hundred cycles to get in/out of  kernel 

ò  Plus cost of  switching a thread 

ò  Time in the scheduler counts against your timeslice 

ò  2 threads, 1 CPU 

ò  If  I can run the context switching code locally (avoiding 
trap overheads, etc), my threads get to run slightly longer! 

ò  Stack switching code works in userspace with few changes 



Finer-Grained Scheduling 
Control 

ò  Example: Thread 1 has a lock, Thread 2 waiting for lock 

ò  Thread 1’s quantum expired 

ò  Thread 2 just spinning until its quantum expires 

ò  Wouldn’t it be nice to donate Thread 2’s quantum to 
Thread 1? 
ò  Both threads will make faster progress! 

ò  Similar problems with producer/consumer, barriers, etc. 

ò  Deeper problem: Application’s data flow and 
synchronization patterns hard for kernel to infer 



Blocking I/O 

ò  I have 2 threads, they each get half  of  the application’s 
quantum 

ò  If  A blocks on I/O and B is using the CPU 

ò  B gets half  the CPU time 

ò  A’s quantum is “lost” (at least in some schedulers) 

ò  Modern Linux scheduler: 

ò  A gets a priority boost 

ò  Maybe application cares more about B’s CPU time… 



Scheduler Activations 

ò  Observations:  

ò  Kernel context switching substantially more expensive 
than user context switching 

ò  Kernel can’t infer application goals as well as programmer 

ò  nice() helps, but clumsy 

ò  Thesis: Highly tuned multithreading should be done in 
the application 

ò  Better kernel interfaces needed 



What is a scheduler 
activation? 

ò  Like a kernel thread: a kernel stack and a user-mode stack 

ò  Represents the allocation of  a CPU time slice 

ò  Not like a kernel thread: 

ò  Does not automatically resume a user thread 

ò  Goes to one of  a few well-defined “upcalls” 

ò  New timeslice, Timeslice expired, Blocked SA, Unblocked SA 

ò  Upcalls must be reentrant (called on many CPUs at same time) 

ò  User scheduler decides what to run 



User-level threading 

ò  Independent of  SA’s, user scheduler creates: 

ò  Analog of  task struct for each thread 

ò  Stores register state when preempted 

ò  Stack for each thread 

ò  Some sort of  run queue 
ò  Simple list in the paper 

ò  Application free to use O(1), CFS, round-robin, etc. 

ò  User scheduler keeps kernel notified of  how many 
runnable tasks it has (via system call) 



Process Start 

ò  Rather than jump to main, kernel upcalls to scheduler 

ò  New timeslice 

ò  Scheduler initially selects first thread and starts in 
“main” 



New Thread 

ò  When a new thread is created: 

ò  Scheduler issues a system call, indicating it could use 
another CPU 

ò  If  a CPU is free, kernel creates a new SA 

ò   Upcalls to “New timeslice” 

ò  Scheduler selects new thread to run; loads register state 



Preemption 

ò  Suppose I have 4 threads running (T 0-3), in SAs A-D 

ò  T0 gets preempted, CPU taken away (SA A dead) 

ò  Kernel selects another SA to terminate (say B) 

ò  Creates a SA E that gets rest of  B’s timeslice 

ò  Calls “Timeslice expired upcall” to communicate: 

ò  A is expired, T0’s register state 

ò  B is also expired now, T1’s register state 

ò  User scheduler decides which one to resume in E 



Blocking System Call 

ò  Suppose Thread 1 in SA A calls a blocking system call 

ò  E.g., read from a network socket, no data available 

ò  Kernel creates a new SA B and upcalls to “Blocked SA” 

ò  Indicates that SA A is blocked 

ò  B gets rest of  A’s timeslice 

ò  User scheduler figures out that T1 was running on SA A 

ò  Updates bookkeeping 

ò  Selects another thread to run, or yields the CPU with a syscall 



Un-blocking a thread 

ò  Suppose the network read gets data, T1 is unblocked 

ò  Kernel finishes system call 

ò  Kernel creates a new SA, upcalls to “unblocked thread” 

ò  Communicates register state of  T1 

ò  Perhaps including return code in an updated register 

ò  Just loading these registers is enough to resume execution 

ò  No iret needed! 

ò  T1 goes back on the runnable list---maybe selected 



Downsides 

ò  A random user thread gets preempted on every 
scheduling-related event 

ò  Not free! 

ò  User scheduling must do better than kernel by a big 
enough margin to offset these overheads 

ò  Moreover, the most important thread may be the one to 
get preempted, slowing down critical path 

ò  Potential optimization: communicate to kernel a 
preference for which activation gets preempted to notify of  
an event 



User Timeslicing? 

ò  Suppose I have 8 threads and the system has 4 CPUs: 

ò  I will only ever get 4 SAs 

ò  Suppose I am the only thing running and I get to keep 
them all forever 

ò  How do I context switch to the other threads? 

ò  No upcall for a timer interrupt 

ò  Guess: use a timer signal (delivered on a system call 
boundary; pray a thread issues a system call periodically) 



Preemption in the 
scheduler? 

ò  Edge case: A SA is preempted in the scheduler itself  

ò  Holding a scheduler lock 

ò  Uh-oh: Can’t even service its own upcall! 

ò  Solution: Set a flag in a thread that has a lock 

ò  If  a preemption upcall comes through while a lock is held, 
immediately reschedule the thread long enough to release 
the lock and clear the flag 

ò  Thread must then jump back to the upcall for proper 
scheduling 



Scheduler Activation 
Discussion 

ò  Scheduler activations have not been widely adopted 

ò  An anomaly for this course 

ò  Still an important paper to read: 

ò  Think creatively about “right” abstractions 

ò  Clear explanation of  user-level threading issues 

ò  People build user threads on kernel threads, but more 
challenging without SAs 

ò  Hard to detect preemption of  another thread and yield 

ò  Switch out blocking calls for non-blocking versions; reschedule 
on waiting---limited in practice 



Meta-observation 

ò  Much of  90s OS research focused on giving 
programmers more control over performance 

ò  E.g., microkernels, extensible OSes, etc. 

ò  Argument: clumsy heuristics or awkward abstractions 
are keeping me from getting full performance of  my 
hardware 

ò  Some won the day, some didn’t 

ò  High-performance databases generally get direct control 
over disk(s) rather than go through the file system 



User-threading in practice 

ò  Has come in and out of  vogue 

ò  Correlated with how efficiently the OS creates and context 
switches threads 

ò  Linux 2.4 – Threading was really slow 

ò  User-level thread packages were hot 

ò  Linux 2.6 – Substantial effort went into tuning threads 

ò  E.g., Most JVMs abandoned user-threads 



Summary 

ò  User-level threading is about performance, either: 

ò  Avoiding high kernel threading overheads, or 

ò  Hand-optimizing scheduling behavior for an unusual 
application 

ò  User-threading is challenging to implement on traditional OS 
abstractions 

ò  Scheduler activations: the right abstraction? 

ò  Explicit representation of  CPU time slices 

ò  Upcalls to user scheduler to context switch 

ò  Communicate preempted register state 


