
Linux kernel
synchronization

Don Porter
CSE 506

The old days

ò  Early/simple OSes (like JOS): No need for
synchronization

ò  All kernel requests wait until completion – even disk
requests

ò  Heavily restrict when interrupts can be delivered (all traps
use an interrupt gate)

ò  No possibility for two CPUs to touch same data

Slightly more recently

ò  Optimize kernel performance by blocking inside the kernel

ò  Example: Rather than wait on expensive disk I/O, block and
schedule another process until it completes

ò  Cost: A bit of implementation complexity

ò  Need a lock to protect against concurrent update to pages/
inodes/etc. involved in the I/O

ò  Could be accomplished with relatively coarse locks

ò  Like the Big Kernel Lock (BKL)

ò  Benefit: Better CPU utilitzation

A slippery slope

ò  We can enable interrupts during system calls

ò  More complexity, lower latency

ò  We can block in more places that make sense

ò  Better CPU usage, more complexity

ò  Concurrency was an optimization for really fancy OSes,
until…

The forcing function

ò  Multi-processing

ò  CPUs aren’t getting faster, just smaller

ò  So you can put more cores on a chip

ò  The only way software (including kernels) will get faster
is to do more things at the same time

ò  Performance will increasingly cost complexity

Performance Scalability

ò  How much more work can this software complete in a
unit of time if I give it another CPU?

ò  Same: No scalability---extra CPU is wasted

ò  1 -> 2 CPUs doubles the work: Perfect scalability

ò  Most software isn’t scalable

ò  Most scalable software isn’t perfectly scalable

Coarse vs. Fine-grained
locking

ò  Coarse: A single lock for everything

ò  Idea: Before I touch any shared data, grab the lock

ò  Problem: completely unrelated operations wait on each
other

ò  Adding CPUs doesn’t improve performance

Fine-grained locking

ò  Fine-grained locking: Many “little” locks for individual
data structures

ò  Goal: Unrelated activities hold different locks

ò  Hence, adding CPUs improves performance

ò  Cost: complexity of coordinating locks

mm/filemap.c lock ordering
/*
 * Lock ordering:
 * ->i_mmap_lock (vmtruncate)
 * ->private_lock (__free_pte->__set_page_dirty_buffers)
 * ->swap_lock (exclusive_swap_page, others)
 * ->mapping->tree_lock
 * ->i_mutex
 * ->i_mmap_lock (truncate->unmap_mapping_range)
 * ->mmap_sem
 * ->i_mmap_lock
 * ->page_table_lock or pte_lock (various, mainly in memory.c)
 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
 * ->mmap_sem
 * ->lock_page (access_process_vm)
 * ->mmap_sem
 * ->i_mutex (msync)
 * ->i_mutex
 * ->i_alloc_sem (various)
 * ->inode_lock
 * ->sb_lock (fs/fs-writeback.c)
 * ->mapping->tree_lock (__sync_single_inode)
 * ->i_mmap_lock
 * ->anon_vma.lock (vma_adjust)
 * ->anon_vma.lock
 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
 * ->page_table_lock or pte_lock
 * ->swap_lock (try_to_unmap_one)
 * ->private_lock (try_to_unmap_one)
 * ->tree_lock (try_to_unmap_one)
 * ->zone.lru_lock (follow_page->mark_page_accessed)
 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
 * ->private_lock (page_remove_rmap->set_page_dirty)
 * ->tree_lock (page_remove_rmap->set_page_dirty)
 * ->inode_lock (page_remove_rmap->set_page_dirty)
 * ->inode_lock (zap_pte_range->set_page_dirty)
 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
 * ->task->proc_lock
 * ->dcache_lock (proc_pid_lookup)
 */

Current reality

ò  Unsavory trade-off between complexity and performance
scalability

How do locks work?

ò  Two key ingredients:

ò  A hardware-provided atomic instruction

ò  Determines who wins under contention

ò  A waiting strategy for the loser(s)

Atomic instructions

ò  A “normal” instruction can span many CPU cycles

ò  Example: ‘a = b + c’ requires 2 loads and a store

ò  These loads and stores can interleave with other CPUs’ memory
accesses

ò  An atomic instruction guarantees that the entire operation is
not interleaved with any other CPU

ò  x86: Certain instructions can have a ‘lock’ prefix

ò  Intuition: This CPU ‘locks’ all of memory

ò  Expensive! Not ever used automatically by a compiler; must be
explicitly used by the programmer

Atomic instruction
examples

ò  Atomic increment/decrement (x++ or x--)

ò  Used for reference counting

ò  Some variants also return the value x was set to by this
instruction (useful if another CPU immediately changes
the value)

ò  Compare and swap

ò  if (x == y) x = z;

ò  Used for many lock-free data structures

Atomic instructions +
locks

ò  Most lock implementations have some sort of counter

ò  Say initialized to 1

ò  To acquire the lock, use an atomic decrement

ò  If you set the value to 0, you win! Go ahead

ò  If you get < 0, you lose. Wait L

ò  Atomic decrement ensures that only one CPU will
decrement the value to zero

ò  To release, set the value back to 1

Waiting strategies

ò  Spinning: Just poll the atomic counter in a busy loop;
when it becomes 1, try the atomic decrement again

ò  Blocking: Create a kernel wait queue and go to sleep,
yielding the CPU to more useful work

ò  Winner is responsible to wake up losers (in addition to
setting lock variable to 1)

ò  Create a kernel wait queue – the same thing used to wait
on I/O

ò  Note: Moving to a wait queue takes you out of the
scheduler’s run queue (much confusion on midterm here)

Which strategy to use?

ò  Main consideration: Expected time waiting for the lock
vs. time to do 2 context switches

ò  If the lock will be held a long time (like while waiting for
disk I/O), blocking makes sense

ò  If the lock is only held momentarily, spinning makes sense

ò  Other, subtle considerations we will discuss later

Linux lock types

ò  Blocking: mutex, semaphore

ò  Non-blocking: spinlocks, seqlocks, completions

Linux spinlock (simplified)

1: lock; decb slp->slock

 jns 3f

2: pause

 cmpb $0,slp->slock

 jle 2b

 jmp 1b

3:

// Locked decrement of lock var

// Jump if not set (result is zero) to 3

// Low power instruction, wakes on
// coherence event

// Read the lock value, compare to zero

// If less than or equal (to zero), goto 2

// Else jump to 1 and try again

// We win the lock

Rough C equivalent

while (0 != atomic_dec(&lock->counter)) {

 do {

 // Pause the CPU until some coherence

 // traffic (a prerequisite for the counter changing)

 // saving power

 } while (lock->counter <= 0);

}

Why 2 loops?

ò  Functionally, the outer loop is sufficient

ò  Problem: Attempts to write this variable invalidate it in all
other caches

ò  If many CPUs are waiting on this lock, the cache line will
bounce between CPUs that are polling its value

ò  This is VERY expensive and slows down EVERYTHING on
the system

ò  The inner loop read-shares this cache line, allowing all polling
in parallel

ò  This pattern called a Test&Test&Set lock (vs. Test&Set)

Reader/writer locks

ò  Simple optimization: If I am just reading, we can let
other readers access the data at the same time

ò  Just no writers

ò  Writers require mutual exclusion

Linux RW-Spinlocks

ò  Low 24 bits count active readers

ò  Unlocked: 0x01000000

ò  To read lock: atomic_dec_unless(count, 0)
ò  1 reader: 0x:00ffffff

ò  2 readers: 0x00fffffe

ò  Etc.

ò  Readers limited to 2^24. That is a lot of CPUs!

ò  25th bit for writer

ò  Write lock – CAS 0x01000000 -> 0
ò  Readers will fail to acquire the lock until we add 0x1000000

Subtle issue

ò  What if we have a constant stream of readers and a
waiting writer?

ò  The writer will starve

ò  We may want to prioritize writers over readers

ò  For instance, when readers are polling for the write

ò  How to do this?

Seqlocks

ò  Explicitly favor writers, potentially starve readers

ò  Idea:

ò  An explicit write lock (one writer at a time)

ò  Plus a version number – each writer increments at
beginning and end of critical section

ò  Readers: Check version number, read data, check again

ò  If version changed, try again in a loop

ò  If version hasn’t changed, neither has data

Composing locks

ò  Suppose I need to touch two data structures (A and B) in
the kernel, protected by two locks.

ò  What could go wrong?

ò  Deadlock!

ò  Thread 0: lock(a); lock(b)

ò  Thread 1: lock(b); lock(a)

ò  How to solve?

ò  Lock ordering

How to order?

ò  What if I lock each entry in a linked list. What is a
sensible ordering?

ò  Lock each item in list order

ò  What if the list changes order?

ò  Uh-oh! This is a hard problem

ò  Lock-ordering usually reflects static assumptions about
the structure of the data

ò  When you can’t make these assumptions, ordering gets
hard

Linux solution

ò  In general, locks for dynamic data structures are ordered
by kernel virtual address

ò  I.e., grab locks in increasing virtual address order

ò  A few places where traversal path is used instead

Semaphore

ò  A counter of allowed concurrent processes

ò  A mutex is the special case of 1 at a time

ò  Plus a wait queue

ò  Implemented similarly to a spinlock, except spin loop
replaced with placing oneself on a wait queue

Ordering blocking and
spin locks

ò  If you are mixing blocking locks with spinlocks, be sure
to acquire all blocking locks first and release blocking
locks last

ò  Releasing a semaphore/mutex schedules the next waiter

ò  On the same CPU!

ò  If we hold a spinlock, the waiter may also try to grab this
lock

ò  The waiter may block trying to get our spinlock and never
yield the CPU

ò  We never get scheduled again, we never release the lock

Summary

ò  Understand how to implement a spinlock/semaphore/
rw-spinlock

ò  Understand trade-offs between:

ò  Spinlocks vs. blocking lock

ò  Fine vs. coarse locking

ò  Favoring readers vs. writers

ò  Lock ordering issues

