
12/5/11	

1	

SELinux
Don Porter

CSE 506

MAC vs. DAC

ò  By default, Unix/Linux provides Discretionary Access
Control

ò  The user (subject) has discretion to set security policies (or
not)

ò  Example: I may ‘chmod o+a’ the file containing 506
grades, which violates university privacy policies

ò  Mandatory Access Control enforces a central policy on
a system

ò  Example: MAC policies can prohibit me from sharing 506
grades

SELinux

ò  Like the Windows 2k ACLs, one key goal is enforcing
the privilege of least authority

ò  No ‘root’ user

ò  Several administrative roles with limited extra privileges

ò  Example: Changing passwords does not require
administrative access to printers
ò  The principle of least authority says you should only give

the minimum privilege needed

ò  Reasoning: if ‘passwd’ is compromised (e.g., due to a
buffer overflow), we should limit the scope of the damage

SELinux

ò  Also like Win2k ACLs, a goal is to specify fine-grained
access control permission to kernel objects

ò  In service of principle of least authority

ò  Read/write permissions are coarse

ò  Lots of functions do more limited reads/write

12/5/11	

2	

SELinux + MAC

ò  Unlike Win2k ACLs, MAC enforcement requires all
policies to be specified by an administrator

ò  Users cannot change these policies

ò  Multi-level security: Declassified, Secret, Top-Secret, etc.

ò  In MLS, only a trusted declassifier can lower the secrecy
of a file

ò  Users with appropriate privilege can read classified files,
but cannot output their contents to lower secrecy levels

Example

ò  Suppose I want to read a secret file

ò  In SELinux, I transition to a secret role to do this

ò  This role is restricted:

ò  Cannot write to the network

ò  Cannot write to declassified files

ò  Secret files cannot be read in a declassified role

ò  Idea: Policies often require applications/users to give up
some privileges (network) for others (access to secrets)

General principles

ò  Secrecy (Bell-LaPadula)

ò  No read up, no write down

ò  In secret mode, you can’t write a declassified file, or read
top-secret data

ò  Integrity (Biba)

ò  No write up, no read down

ò  A declassified user can’t write garbage into a secret file

ò  A top-secret application can’t read input/load libraries
from an untrusted source (reduce risk of compromise)

SELinux Policies

ò  Written by an administrator in a SELinux-specific
language

ò  Often written by an expert at Red Hat and installed
wholesale

ò  Difficult to modify or write from scratch

ò  Very expansive---covers all sorts of subjects, objects, and
verbs

12/5/11	

3	

Key Points of Interest

ò  Role-Based Access Control (RBAC)

ò  Type Enforcement

ò  Linux Security Modules (LSM)

ò  Labeling and persistence

Role-Based Access
Control

ò  Idea: Extend or restrict user rights with a role that
captures what they are trying to do

ò  Example: I may browse the web, grade labs, and
administer a web server

ò  Create a role for each, with different privileges

ò  My grader role may not have network access, except to
blackboard

ò  My web browsing role may not have access to my home
directory files

ò  My admin role and web roles can’t access students’ labs

Roles vs. Restricted
Context

ò  Win2k ACLs allow a user to create processes with a
subset of his/her privileges

ò  Roles provide the same functionality

ò  But also allow a user to add privileges, such as
administrative rights

ò  Roles may also have policy restrictions on who/when/
how roles are changed

ò  Not just anyone (or any program) can get admin privileges

The power of RBAC

ò  Conditional access control

ò  Example: Don’t let this file go out on the internet

ò  Create secret file role

ò  No network access, can’t write any files except other secret
files

ò  Process cannot change roles, only exit

ò  Process can read secret files

ò  I challenge you to express this policy in Unix permissions!

12/5/11	

4	

Roles vs. Specific Users

ò  Policies are hard to write

ò  Roles allow policies to be generalized

ò  Users everywhere want similar restrictions on their
browser

ò  Roles eliminate the need to re-tailor the policy file for
every user

ò  Anyone can transition to the browser role

Type Enforcement

ò  Very much like the fine-grained ACLs we saw last time

ò  Rather than everything being a file, objects are given a
more specific type

ò  Type includes a set of possible actions on the object

ò  E.g., Socket: create, listen, send, recv, close

ò  Type includes ACLs based on roles

Type examples

ò  Device types:

ò  agp_device_t - AGP device (/dev/agpgart)

ò  console_device_t - Console device (/dev/console)

ò  mouse_device_t - Mouse (/dev/mouse)

ò  File types:

ò  fs_t - Defaults file type

ò  etc_aliases_t - /etc/aliases and related files

ò  bin_t - Files in /bin

More type examples

ò  Networking:

ò  netif_eth0_t – Interface eth0

ò  port_t – TCP/IP port

ò  tcp_socket_t – TCP socket

ò  /proc types

ò  proc_t - /proc and related files

ò  sysctl_t - /proc/sys and related files

ò  sysctl_fs_t - /proc/sys/fs and related files

12/5/11	

5	

Detailed example

ò  ping_exec_t type associated with ping binary

ò  Policies for ping_exec_t:

ò  Restrict who can transition into ping_t domain

ò  Admins for sure, and init scripts

ò  Regular users: admin can configure

ò  ping_t domain (executing process) allowed to:

ò  Use shared libraries

ò  Use the network

ò  Call ypbind (for hostname lookup in YP/NIS)

Ping cont.

ò  ping_t domain process can also:

ò  Read certain files in /etc

ò  Create Unix socket streams

ò  Create raw ICMP sockets + send/recv on them on any interface

ò  setuid (Why? Don’t know)

ò  Access the terminal

ò  Get file system attributes and search /var (mostly harmless
operations that would pollute the logs if disallowed)

ò  Violate least privilege to avoid modification!

Full ping policy
01 type ping_t, domain, privlog;
02 type ping_exec_t, file_type, sysadmfile, exec_type;
03 role sysadm_r types ping_t;
04 role system_r types ping_t;
05
06 # Transition into this domain when you run this
program.
07 domain_auto_trans(sysadm_t, ping_exec_t, ping_t)
08. domain_auto_trans(initrc_t, ping_exec_t, ping_t)
09
10 uses_shlib(ping_t)
11 can_network(ping_t)
12 general_domain_access(ping_t)
13 allow ping_t { etc_t resolv_conf_t }:file { getattr
read };
14 allow ping_t self:unix_stream_socket
create_socket_perms;
15
16 # Let ping create raw ICMP packets.
17 allow ping_t self:rawip_socket {create ioctl read
write bind getopt setopt};
18 allow ping_t any_socket_t:rawip_socket sendto;

19
20 auditallow ping_t any_socket_t:rawip_socket
sendto;
21
22 # Let ping receive ICMP replies.
23 allow ping_t { self icmp_socket_t }:rawip_socket
recvfrom;
24
25 # Use capabilities.
26 allow ping_t self:capability { net_raw setuid };
27
28 # Access the terminal.
29 allow ping_t admin_tty_type:chr_file
rw_file_perms;
30 ifdef(`gnome-pty-helper.te', `allow ping_t
sysadm_gph_t:fd use;')
31 allow ping_t privfd:fd use;
32
33 dontaudit ping_t fs_t:filesystem getattr;
34
35 # it tries to access /var/run
36 dontaudit ping_t var_t:dir search;

Linux Security Modules

ò  Culturally, top Linux developers care about writing a
good kernel

ò  Not as much about security

ò  Different specializations

ò  Their goal: Modularize security as much as humanly
possible

ò  Security folks write modules that you can load if you care
about security; kernel developers don’t have to worry
about understanding security

12/5/11	

6	

Basic deal

ò  Linux Security Modules API:

ò  Linux developers put dozens of access control hooks all
over the kernel

ò  See include/linux/security.h

ò  LSM writer can implement access control functions called
by these hooks that enforce arbitrary policies

ò  Linux also adds opaque “security” pointer that LSM can
use to store security info they need in processes, inodes,
sockets, etc.

SELinux example

ò  A task has an associated security pointer

ò  Stores current role

ò  An inode also has a security pointer

ò  Stores type and policy rules

ò  Initialization hooks for both called when created

SELinux example, cont.

ò  A task reads the inode

ò  VFS function calls LSM hook, with inode and task pointer

ò  LSM reads policy rules from inode

ò  Suppose the file requires a role transition for read

ò  LSM hook modifies task’s security data to change its role

ò  Then read allowed to proceed

Problem: Persistence

ò  All of these security hooks are great for in memory data
structures

ò  E.g., VFS inodes

ò  How do you ensure the policy associated with a given
file persists across reboots?

12/5/11	

7	

Extended Attributes

ò  In addition to 9+ standard Unix attributes, associate a small
key/value store with an on-disk inode

ò  User can tag a file with arbitrary metadata

ò  Key must be a string, prefixed with a domain

ò  User, trusted, system, security

ò  Users must use ‘user’ domain

ò  LSM uses ‘security’ domain

ò  Only a few file systems support extended attributes

ò  E.g., ext2/3/4; not NFS, FAT32

Persistence

ò  All ACLs, type information, etc. are stored in extended
attributes for persistence

ò  Each file must be labeled for MAC enforcement

ò  Labeling is the generic problem of assigning a type or
security context to each object/file in the system

ò  Can be complicated

ò  SELinux provides some tools to help, based on standard
system file names and educated guesses

Summary

ò  SELinux augments Linux with a much more restrictive
security model

ò  MAC vs. DAC

ò  Understand Roles and Types

ò  Basic ideas of LSM

ò  Labeling and extended attributes

