
Scheduling, part 2 
Don Porter 

CSE 506 



Last time… 

ò  Scheduling overview, key trade-offs, etc. 

ò  O(1) scheduler – older Linux scheduler 

ò  Today: Completely Fair Scheduler (CFS) – new hotness 

ò  Other advanced scheduling issues 

ò  Real-time scheduling 

ò  Kernel preemption 

ò  Priority laundering  

ò  Security attack trick developed at Stony Brook 



Fair Scheduling 

ò  Simple idea: 50 tasks, each should get 2% of  CPU time 

ò  Do we really want this? 

ò  What about priorities? 

ò  Interactive vs. batch jobs? 

ò  CPU topologies? 

ò  Per-user fairness?  
ò  Alice has one task and Bob has 49; why should Bob get 98% 

of  CPU time? 

ò  Etc.? 



Editorial 

ò  Real issue: O(1) scheduler bookkeeping is complicated 

ò  Heuristics for various issues makes it more complicated 

ò  Heuristics can end up working at cross-purposes 

ò  Software engineering observation: 

ò  Kernel developers better understood scheduling issues and 
workload characteristics, could make more informed 
design choice 

ò  Elegance: Structure (and complexity) of  solution 
matches problem 



CFS idea 

ò  Back to a simple list of  tasks (conceptually) 

ò  Ordered by how much time they’ve had 

ò  Least time to most time 

ò  Always pick the “neediest” task to run 

ò  Until it is no longer neediest 

ò  Then re-insert old task in the timeline 

ò  Schedule the new neediest 



But lists are inefficient 

ò  Duh! That’s why we really use a tree 

ò  Red-black tree: 9/10 Linux developers recommend it 

ò  log(n) time for: 

ò  Picking next task (i.e., search for left-most task) 

ò  Putting the task back when it is done (i.e., insertion) 

ò  Remember: n is total number of  tasks on system 



Details 

ò  Global virtual clock: ticks at a fraction of  real time 

ò  Fraction is number of  total tasks 

ò  Each task counts how many clock ticks it has had 

ò  Example: 4 tasks 

ò  Global vclock ticks once every 4 real ticks 

ò  Each task scheduled for one real tick; advances local clock 
by one tick 



More details 

ò  Task’s ticks make key in RB-tree 

ò  Fewest tick count get serviced first 

ò  No more runqueues 

ò  Just a single tree-structured timeline 



Edge case 1 

ò  What about a new task?   

ò  If  task ticks start at zero, doesn’t it get to unfairly run for a 
long time? 

ò  Strategies: 

ò  Could initialize to current time (start at right) 

ò  Could get half  of  parent’s deficit 



What happened to 
priorities? 

ò  Priorities let me be deliberately unfair 

ò  This is a useful feature 

ò  In CFS, priorities weigh the length of  a task’s “tick” 

ò  Example: 

ò  For a high-priority task, a virtual, task-local tick may last for 10 
actual clock ticks 

ò  For a low-priority task, a virtual, task-local tick may only last for 
1 actual clock tick 

ò  Result: Higher-priority tasks run longer, low-priority tasks 
make some progress 



Interactive latency 

ò  Recall: GUI programs are I/O bound 

ò  We want them to be responsive to user input 

ò  Need to be scheduled as soon as input is available 

ò  Will only run for a short time 



GUI program strategy 

ò  Just like O(1) scheduler, CFS takes blocked programs out 
of  the timeline 

ò  Virtual clock continues ticking while tasks are blocked 

ò  Increasingly large deficit between task and global vclock 

ò  When a GUI task is runnable, generally goes to the front 

ò  Dramatically lower vclock value than CPU-bound jobs 

ò  Reminder: “front” is left side of  tree 



Other refinements 

ò  Per group or user scheduling 

ò  Real to virtual tick ratio becomes a function of  number of  
both global and user’s/group’s tasks 

ò  Unclear how CPU topologies are addressed  



CFS Summary 

ò  Simple idea: logically a queue of  runnable tasks, ordered 
by who has had the least CPU time 

ò  Implemented with a tree for fast lookup, reinsertion 

ò  Global clock counts virtual ticks 

ò  Priorities and other features/tweaks implemented by 
playing games with length of  a virtual tick 

ò  Virtual ticks vary in wall-clock length per-process 



Real-time scheduling 

ò  Different model: need to do a modest amount of  work 
by a deadline 

ò  Example: 

ò  Audio application needs to deliver a frame every nth of  a 
second 

ò  Too many or too few frames unpleasant to hear 



Strawman 

ò  If  I know it takes n ticks to process a frame of  audio, just 
schedule my application n ticks before the deadline 

ò  Problems? 

ò  Hard to accurately estimate n 

ò  Interrupts 

ò  Cache misses 

ò  Disk accesses 

ò  Variable execution time depending on inputs 



Hard problem 

ò  Gets even worse with multiple applications + deadlines 

ò  May not be able to meet all deadlines 

ò  Interactions through shared data structures worsen 
variability 

ò  Block on locks held by other tasks 

ò  Cached file system data gets evicted 

ò  Optional reading (interesting): Nemesis – an OS without 
shared caches to improve real-time scheduling 



Simple hack 

ò  Create a highest-priority scheduling class for real-time 
process 

ò  SCHED_RR – RR == round robin 

ò  RR tasks fairly divide CPU time amongst themselves 

ò  Pray that it is enough to meet deadlines 

ò  If  so, other tasks share the left-overs 

ò  Assumption: like GUI programs, RR tasks will spend 
most of  their time blocked on I/O 

ò  Latency is key concern 



Next issue: Kernel time 

ò  Should time spent in the OS count against an 
application’s time slice? 

ò  Yes: Time in a system call is work on behalf  of  that task 

ò  No: Time in an interrupt handler may be completing I/O 
for another task 



Timeslices + syscalls 

ò  System call times vary 

ò  Context switches generally at system call boundary 

ò  Can also context switch on blocking I/O operations 

ò  If  a time slice expires inside of  a system call: 

ò  Task gets rest of  system call “for free” 

ò  Steals from next task 

ò  Potentially delays interactive/real time task until finished 



Idea: Kernel Preemption 

ò  Why not preempt system calls just like user code? 

ò  Well, because it is harder, duh! 

ò  Why? 

ò  May hold a lock that other tasks need to make progress 

ò  May be in a sequence of  HW config options that assumes it 
won’t be interrupted 

ò  General strategy: allow fragile code to disable preemption 

ò  Cf: Interrupt handlers can disable interrupts if  needed 



Kernel Preemption 

ò  Implementation: actually not to bad 

ò  Essentially, it is transparently disabled with any locks held 

ò  A few other places disabled by hand 

ò  Result: UI programs a bit more responsive 



Priority Laundering 

ò  Some attacks are based on race conditions for OS 
resources (e.g., symbolic links) 

ò  Generally, these are privilege-escalation attacks against 
administrative utilities (e.g., passwd) 

ò  Can only be exploited if  attacker controls scheduling 

ò  Ensure that victim is descheduled after a given system call 
(not explained today) 

ò  Ensure that attacker always gets to run after the victim 



Problem rephrased 

ò  At some arbitrary point in the future, I want to be sure 
task X is at the front of  the scheduler queue 

ò  But no sooner 

ò  And I have some CPU-intensive work I also need to do 

ò  Suggestions? 



Dump work on your kids 

ò  Strategy: 

ò  Create a child process to do all the work 

ò  And a pipe 

ò  Parent attacker spends all of  its time blocked on the pipe 

ò  Looks I/O bound – gets priority boost! 

ò  Just before right point in the attack, child puts a byte in 
the pipe 

ò  Parent uses short sleep intervals for fine-grained timing 

ò  Parent stays at the front of  the scheduler queue 



SBU Pride 

ò  This trick was developed as part of  a larger work on 
exploiting race conditions at SBU 

ò  By Rob Johnson and SPLAT lab students 

ò  An optional reading, if  you are interested 

ò  Something for the old tool box… 



Summary 

ò  Understand: 

ò  Completely Fair Scheduler (CFS) 

ò  Real-time scheduling issues 

ò  Kernel preemption 

ò  Priority laundering 


